Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning

强化学习 调度(生产过程) 计算机科学 马尔可夫决策过程 机器人 任务(项目管理) 人工智能 动作选择 增强学习 运筹学 机器学习 马尔可夫过程 工程类 运营管理 统计 神经科学 生物 系统工程 数学 感知
作者
Yu Tian,Jing Huang,Yu Tian
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:60: 487-499 被引量:51
标识
DOI:10.1016/j.jmsy.2021.07.015
摘要

Human-Robot Collaboration (HRC) presents an opportunity to improve the efficiency of manufacturing processes. However, the existing task planning approaches for HRC are still limited in many ways, e.g., co-robot encoding must rely on experts’ knowledge and the real-time task scheduling is applicable within small state-action spaces or simplified problem settings. In this paper, the HRC assembly working process is formatted into a novel chessboard setting, in which the selection of chess piece move is used to analogize to the decision making by both humans and robots in the HRC assembly working process. To optimize the completion time, a Markov game model is considered, which takes the task structure and the agent status as the state input and the overall completion time as the reward. Without experts’ knowledge, this game model is capable of seeking for correlated equilibrium policy among agents with convergency in making real-time decisions facing a dynamic environment. To improve the efficiency in finding an optimal policy of the task scheduling, a deep-Q-network (DQN) based multi-agent reinforcement learning (MARL) method is applied and compared with the Nash-Q learning, dynamic programming and the DQN-based single-agent reinforcement learning method. A height-adjustable desk assembly is used as a case study to demonstrate the effectiveness of the proposed algorithm with different number of tasks and agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxnice完成签到,获得积分10
1秒前
聪慧芷巧应助星川采纳,获得10
1秒前
tyhg完成签到,获得积分10
1秒前
刻苦的曼青完成签到,获得积分10
1秒前
打打应助海风采纳,获得10
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
tuetue应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
卢建烨完成签到,获得积分10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
爱吃菠萝蜜完成签到,获得积分10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Johnny完成签到,获得积分10
3秒前
3秒前
ludong_0应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
萧水白应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
有魅力听枫完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
狂野忆文完成签到,获得积分10
4秒前
4秒前
4秒前
健忘丹珍完成签到,获得积分10
4秒前
5秒前
朱正家完成签到,获得积分10
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479