环境修复
污染物
地下水修复
环境科学
环境化学
金属有机骨架
吸附
水处理
化学
污染
环境工程
废物管理
生态学
工程类
有机化学
生物
作者
Zhang Shu,Jiaqi Wang,Yue Zhang,Junzhou Ma,Lintianyang Huang,Shujun Yu,Lan Chen,Gang Song,Muqing Qiu,Xiangxue Wang
标识
DOI:10.1016/j.envpol.2021.118076
摘要
Because the pollutants produced by human activities have destroyed the ecological balance of natural water environment, and caused severe impact on human life safety and environmental security. Hence the task of water environment restoration is imminent. Metal-organic frameworks (MOFs), structured from organic ligands and inorganic metal ions, are notable for their outstanding crystallinity, diverse structures, large surface areas, adsorption performance, and excellent component tunability. The water stability of MOFs is a key requisite for their possible actual applications in separation, catalysis, adsorption, and other water environment remediation areas because it is necessary to safeguard the integrity of the material structure during utilization. In this article, we comprehensively review state-of-the-art research progress on the promising potential of MOFs as excellent nanomaterials to remove contaminants from the water environment. Firstly, the fundamental characteristics and preparation methods of several typical water-stable MOFs include UiO, MIL, and ZIF are introduced. Then, the removal property and mechanism of heavy metal ions, radionuclide contaminants, drugs, and organic dyes by different MOFs were compared. Finally, the application prospect of MOFs in pollutant remediation prospected. In this review, the synthesis methods and application in water pollutant removal are explored, which provide ways toward the effective use of water-stable MOFs in materials design and environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI