Predicting Depression Onset in Young People Based on Clinical, Cognitive, Environmental, and Neurobiological Data

萧条(经济学) 接收机工作特性 逻辑回归 重性抑郁障碍 心理学 临床心理学 医学 精神科 心情 内科学 宏观经济学 经济
作者
Yara J. Toenders,Akhil Kottaram,Richard Dinga,Christopher G. Davey,Tobias Banaschewski,Arun L.W. Bokde,Erin Burke Quinlan,Sylvane Desrivières,Herta Flor,Antoine Grigis,Hugh Garavan,Penny Gowland,Andreas Heinz,Rüdiger Brühl,Jean‐Luc Martinot,Marie‐Laure Paillère Martinot,Frauke Nees,Dimitri Papadopoulos Orfanos,Hervé Lemaître,Tomáš Paus,Luise Poustka,Sarah Hohmann,Juliane H. Fröhner,Michael N. Smolka,Henrik Walter,Robert Whelan,Argyris Stringaris,Betteke van Noort,Jani Penttilä,Yvonne Grimmer,Conrinna Insensee,Andreas Becker,Günter Schumann,Lianne Schmaal
出处
期刊:Biological Psychiatry: Cognitive Neuroscience and Neuroimaging [Elsevier]
卷期号:7 (4): 376-384 被引量:9
标识
DOI:10.1016/j.bpsc.2021.03.005
摘要

Adolescent onset of depression is associated with long-lasting negative consequences. Identifying adolescents at risk for developing depression would enable the monitoring of risk factors and the development of early intervention strategies. Using machine learning to combine several risk factors from multiple modalities might allow prediction of depression onset at the individual level.A subsample of a multisite longitudinal study in adolescents, the IMAGEN study, was used to predict future (subthreshold) major depressive disorder onset in healthy adolescents. Based on 2-year and 5-year follow-up data, participants were grouped into the following: 1) those developing a diagnosis of major depressive disorder or subthreshold major depressive disorder and 2) healthy control subjects. Baseline measurements of 145 variables from different modalities (clinical, cognitive, environmental, and structural magnetic resonance imaging) at age 14 years were used as input to penalized logistic regression (with different levels of penalization) to predict depression onset in a training dataset (n = 407). The features contributing the highest to the prediction were validated in an independent hold-out sample (three independent IMAGEN sites; n = 137).The area under the receiver operating characteristic curve for predicting depression onset ranged between 0.70 and 0.72 in the training dataset. Baseline severity of depressive symptoms, female sex, neuroticism, stressful life events, and surface area of the supramarginal gyrus contributed most to the predictive model and predicted onset of depression, with an area under the receiver operating characteristic curve between 0.68 and 0.72 in the independent validation sample.This study showed that depression onset in adolescents can be predicted based on a combination multimodal data of clinical characteristics, life events, personality traits, and brain structure variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助an采纳,获得10
1秒前
传统的语柳完成签到,获得积分10
2秒前
巴啦啦小魔仙完成签到,获得积分10
2秒前
2秒前
学术小沈发布了新的文献求助10
3秒前
肥肥发布了新的文献求助10
3秒前
优雅的猪完成签到,获得积分10
4秒前
彭于彦祖应助叽里咕噜采纳,获得30
4秒前
4秒前
Hello应助Wenpandaen采纳,获得10
5秒前
Alyssa完成签到,获得积分20
5秒前
欣慰小丸子应助叶某人采纳,获得10
5秒前
6秒前
6秒前
6秒前
Cindy165完成签到 ,获得积分10
8秒前
8秒前
黑闷蛋完成签到,获得积分10
8秒前
橘止发布了新的文献求助20
8秒前
8秒前
8秒前
华仔应助我啊采纳,获得10
9秒前
友好的白柏完成签到 ,获得积分10
9秒前
威武的冷梅完成签到,获得积分10
9秒前
热情语堂发布了新的文献求助10
9秒前
JamesPei应助Almond采纳,获得10
9秒前
Alyssa发布了新的文献求助10
10秒前
Bosean发布了新的文献求助30
10秒前
王灿灿发布了新的文献求助10
10秒前
研友_VZG7GZ应助解觅荷采纳,获得10
10秒前
10秒前
why发布了新的文献求助10
11秒前
11秒前
wang发布了新的文献求助10
11秒前
化学完成签到,获得积分10
11秒前
海子发布了新的文献求助10
12秒前
共享精神应助凌寻冬采纳,获得10
12秒前
12秒前
li发布了新的文献求助10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663