Edge-over-Erosion Error Prediction Method Based on Multi-Level Machine Learning Algorithm

GSM演进的增强数据速率 化学机械平面化 计算机科学 互连 过程(计算) 人工智能 均方预测误差 算法 机器学习 图层(电子) 计算机网络 操作系统 有机化学 化学
作者
Daisuke Fukuda,Kenichi Watanabe,Naoki Idani,Yuji Kanazawa,Masanori Hashimoto
出处
期刊:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences [Institute of Electronics, Information and Communication Engineers]
卷期号:E97.A (12): 2373-2382 被引量:3
标识
DOI:10.1587/transfun.e97.a.2373
摘要

As VLSI process node continue to shrink, chemical mechanical planarization (CMP) process for copper interconnect has become an essential technique for enabling many-layer interconnection. Recently, Edge-over-Erosion error (EoE-error), which originates from overpolishing and could cause yield loss, is observed in various CMP processes, while its mechanism is still unclear. To predict these errors, we propose an EoE-error prediction method that exploits machine learning algorithms. The proposed method consists of (1) error analysis stage, (2) layout parameter extraction stage, (3) model construction stage and (4) prediction stage. In the error analysis and parameter extraction stages, we analyze test chips and identify layout parameters which have an impact on EoE phenomenon. In the model construction stage, we construct a prediction model using the proposed multi-level machine learning method, and do predictions for designed layouts in the prediction stage. Experimental results show that the proposed method attained 2.7∼19.2% accuracy improvement of EoE-error prediction and 0.8∼10.1% improvement of non-EoE-error prediction compared with general machine learning methods. The proposed method makes it possible to prevent unexpected yield loss by recognizing EoE-errors before manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_GZ3zRn发布了新的文献求助10
刚刚
1秒前
无私的芹应助山河入梦来采纳,获得10
2秒前
慕青应助banbieshenlu采纳,获得10
2秒前
2秒前
2秒前
3秒前
小二郎应助科研yuan小白采纳,获得10
3秒前
3秒前
yyy发布了新的文献求助10
4秒前
4秒前
4秒前
zhshyhy完成签到,获得积分10
5秒前
5秒前
挖掘机应助斯奈克采纳,获得200
5秒前
甜味白开水完成签到,获得积分10
6秒前
研友_ngX12Z发布了新的文献求助10
6秒前
花鸟风月evereo完成签到,获得积分10
6秒前
菠萝炒饭应助王三采纳,获得10
7秒前
pppy发布了新的文献求助10
7秒前
郭大王发布了新的文献求助10
7秒前
煜琪发布了新的文献求助10
8秒前
8秒前
crethy完成签到,获得积分10
8秒前
Henry发布了新的文献求助10
8秒前
Akim应助李明采纳,获得10
9秒前
tdd完成签到,获得积分10
9秒前
无私的芹应助黄俊采纳,获得10
9秒前
bofu发布了新的文献求助30
10秒前
www发布了新的文献求助10
10秒前
Owen应助youlingduxiu采纳,获得30
10秒前
叶文言发布了新的文献求助10
10秒前
Avery完成签到 ,获得积分10
10秒前
10秒前
cTiyAmo完成签到,获得积分10
10秒前
11秒前
科研狗完成签到,获得积分10
11秒前
未命名发布了新的文献求助20
12秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180