This paper describes a method to enhance the capability of two-wavelength phase-shifting interferometry. By introducing the phase data of a third wavelength, one can measure the phase of a very steep wave front. Experiments have been performed using a linear detector array to measure surface height of an off-axis parabola. For the wave front being measured the optical path difference between adjacent detector pixels was as large as 3.3 waves. After temporal averaging of five sets of data, the repeatability of the measurement is better than 25-Å rms (λ = 6328 Å).