Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data

遥感 地理 卫星 地图学 作物 环境科学 林业 工程类 航空航天工程
作者
Likai Zhu,Volker C. Radeloff,Anthony R. Ives
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:58: 1-11 被引量:45
标识
DOI:10.1016/j.jag.2017.01.012
摘要

Abstract Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat’s sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat images. However, incorporating only STARFM-predicted images for key dates decreased average classification error by 2% points (from 21% to 19%) compared to using only Landsat images. In particular, if only a single Landsat image was available, adding STARFM predictions for key dates significantly decreased the average classification error by 4 percentage points from 30% to 26% (p
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
鲨鲨鲨发布了新的文献求助30
1秒前
xt_489完成签到,获得积分10
4秒前
清塘夜谈完成签到,获得积分10
4秒前
Jack发布了新的文献求助10
4秒前
小鲸鱼完成签到,获得积分10
6秒前
共享精神应助橘子采纳,获得10
6秒前
123关闭了123文献求助
9秒前
ani完成签到,获得积分10
9秒前
10秒前
gu完成签到,获得积分20
10秒前
11秒前
谦让涵菡完成签到 ,获得积分10
12秒前
真君山山长完成签到,获得积分10
13秒前
依然发布了新的文献求助10
13秒前
14秒前
武勇发布了新的文献求助10
15秒前
Jun完成签到 ,获得积分10
15秒前
听话的靖柏完成签到 ,获得积分10
16秒前
17秒前
Nuyoah完成签到 ,获得积分10
17秒前
19秒前
exosome发布了新的文献求助10
20秒前
zkeeee完成签到 ,获得积分10
21秒前
瘦瘦凌丝完成签到 ,获得积分10
21秒前
hhan发布了新的文献求助10
22秒前
22秒前
yukang应助enshun采纳,获得10
23秒前
洪艳完成签到,获得积分10
23秒前
高君奇发布了新的文献求助10
25秒前
浮生若梦完成签到 ,获得积分10
26秒前
123发布了新的文献求助10
27秒前
zake完成签到,获得积分10
28秒前
喵喵完成签到,获得积分10
29秒前
元狩完成签到 ,获得积分10
30秒前
33秒前
素龙完成签到 ,获得积分10
35秒前
CipherSage应助carryxu采纳,获得10
35秒前
Gauss应助jasonwu2024采纳,获得30
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356