Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram

列线图 医学 无线电技术 分割 神经组阅片室 放射科 人工智能 机器学习 肿瘤科 计算机科学 神经学 精神科
作者
Jingyu Zhong,Chengxiu Zhang,Yangfan Hu,Jing Zhang,Yun Liu,Liping Si,Yue Xing,Defang Ding,Jia Geng,Qiong Jiao,Huizhen Zhang,Guang Yang,Weiwu Yao
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (9): 6196-6206 被引量:33
标识
DOI:10.1007/s00330-022-08735-1
摘要

To implement a pipeline to automatically segment the ROI and to use a nomogram integrating the MRI-based radiomics score and clinical variables to predict responses to neoadjuvant chemotherapy (NAC) in osteosarcoma patients.A total of 144 osteosarcoma patients treated with NAC were separated into training (n = 101) and test (n = 43) groups. After normalisation, ROIs for the preoperative MRI were segmented by a deep learning segmentation model trained with nnU-Net by using two independent manual segmentations as labels. Radiomics features were extracted using automatically segmented ROIs. Feature selection was performed in the training dataset by five-fold cross-validation. The clinical, radiomics, and clinical-radiomics models were built using multiple machine learning methods with the same training dataset and validated with the same test dataset. The segmentation model was evaluated by the Dice coefficient. AUC and decision curve analysis (DCA) were employed to illustrate the model performance and clinical utility.36/144 (25.0%) patients were pathological good responders (pGRs) to NAC, while 108/144 (75.0%) were non-pGRs. The segmentation model achieved a Dice coefficient of 0.869 on the test dataset. The clinical and radiomics models reached AUCs of 0.636 with a 95% confidence interval (CI) of 0.427-0.860 and 0.759 (95% CI, 0.589-0.937), respectively, in the test dataset. The clinical-radiomics nomogram demonstrated good discrimination, with an AUC of 0.793 (95% CI, 0.610-0.975), and accuracy of 79.1%. The DCA suggested the clinical utility of the nomogram.The automatic nomogram could be applied to aid radiologists in identifying pGRs to NAC.• The nnU-Net trained by manual labels enables the use of an automatic segmentation tool for ROI delineation of osteosarcoma. • A pipeline using automatic lesion segmentation and followed by a radiomics classifier could aid the evaluation of NAC response of osteosarcoma. • A predictive nomogram composed of clinical variables and MRI-based radiomics score provides support for individualised treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助lsy采纳,获得10
1秒前
邓杰元关注了科研通微信公众号
3秒前
4秒前
5秒前
6秒前
SYLH应助文章发的多多的采纳,获得10
8秒前
汉堡包应助老阳采纳,获得10
10秒前
11秒前
飞飞鱼发布了新的文献求助10
11秒前
拼搏的飞薇完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
17秒前
19秒前
悦耳黑猫发布了新的文献求助10
21秒前
Tingting完成签到 ,获得积分10
21秒前
22秒前
老阳发布了新的文献求助10
22秒前
23秒前
深情安青应助l98916采纳,获得10
23秒前
24秒前
zimo完成签到,获得积分10
25秒前
25秒前
清新的苑博完成签到,获得积分10
25秒前
lsy发布了新的文献求助10
27秒前
魏晓林完成签到,获得积分10
27秒前
bee发布了新的文献求助10
29秒前
ztt发布了新的文献求助10
30秒前
31秒前
文章发的多多的完成签到,获得积分20
31秒前
打打应助whl采纳,获得10
32秒前
fineglue完成签到,获得积分10
32秒前
34秒前
清新完成签到,获得积分10
35秒前
邓杰元发布了新的文献求助50
35秒前
无辜洋葱发布了新的文献求助10
35秒前
传奇3应助舒服的秋荷采纳,获得10
35秒前
Akim应助天天娃哈哈采纳,获得10
35秒前
顾矜应助悦耳黑猫采纳,获得10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975