General Linear Quadratic Optimal Stochastic Control Problems with Random Coefficients: Linear Stochastic Hamilton Systems and Backward Stochastic Riccati Equations

数学 随机微分方程 Riccati方程 随机控制 独特性 布朗运动 组合数学 发电机(电路理论) 代数Riccati方程 最优控制 应用数学 纯数学 离散数学 数学分析 微分方程 数学优化 量子力学 物理 统计 功率(物理)
作者
Shanjian Tang
出处
期刊:Siam Journal on Control and Optimization [Society for Industrial and Applied Mathematics]
卷期号:42 (1): 53-75 被引量:185
标识
DOI:10.1137/s0363012901387550
摘要

Consider the minimization of the following quadratic cost functional: $$J(u):=E\langle Mx_T,x_T\rangle +E\int_0^T(\langle Q_sx_s,x_s\rangle +\langle N_su_s,u_s\rangle )\, ds,$$ where x is the solution of the following linear stochastic control system: $$ \eq{dx_t=&(A_tx_t+B_tu_t)\, dt +\sum_{i=1}^d(C_t^ix_t+D_t^iu_t)\, dW_t^i,\cr x_0=&h\in \mathbb{R}^n,\qquad u_t\in \mathbb{R}^m; \cr} $$ u is a square integrable adapted process. The problem is conventionally called the stochastic LQ (the abbreviation of "linear quadratic") problem. We are concerned with the following general case: the coefficients A,B,Ci,Di, Q, N, and M are allowed to be adapted processes or random matrices. We prove the existence and uniqueness result for the associated Riccati equation, which in our general case is a backward stochastic differential equation with the generator (the drift term) being highly nonlinear in the two unknown variables. This solves Bismut and Peng's long-standing open problem (for the case of a Brownian filtration), which was initially proposed by the French mathematician J. M. Bismut [in Séminaire de Probabilités XII, Lecture Notes in Math. 649, C. Dellacherie, P. A. Meyer, and M. Weil, eds., Springer-Verlag, Berlin, 1978, pp. 180--264]. We also provide a rigorous derivation of the Riccati equation from the stochastic Hamilton system. This completes the interrelationship between the Riccati equation and the stochastic Hamilton system as two different but equivalent tools for the stochastic LQ problem. There are two key points in our arguments. The first one is to connect the existence of the solution of the Riccati equation to the homomorphism of the stochastic flows derived from the optimally controlled system. Actually, we establish their equivalence. As a consequence, we can construct solutions to a sequence of suitably modified Riccati equations in terms of the associated stochastic Hamilton systems (and the optimal controls). The second key point is to establish a new type of a priori estimate for solutions of Riccati equations, with which we show that the sequence of constructed solutions has a limit which is a solution to the original Riccati equation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
墨冉发布了新的文献求助10
2秒前
小丛完成签到 ,获得积分10
2秒前
汉堡包应助寄居安采纳,获得10
2秒前
2秒前
852应助Ultraviolet采纳,获得10
3秒前
傅全有完成签到,获得积分10
3秒前
Xu发布了新的文献求助10
4秒前
科研通AI5应助Re采纳,获得10
4秒前
小明同学完成签到,获得积分10
4秒前
舒服的萍完成签到,获得积分10
5秒前
6秒前
forest发布了新的文献求助10
6秒前
赘婿应助xuan采纳,获得10
7秒前
8秒前
高贵灵槐完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
寄居安完成签到,获得积分10
9秒前
10秒前
嘟嘟嘟嘟完成签到 ,获得积分10
12秒前
ty发布了新的文献求助10
12秒前
12秒前
forest完成签到,获得积分10
12秒前
13秒前
yukino发布了新的文献求助10
13秒前
964230130发布了新的文献求助20
15秒前
15秒前
15秒前
chrissylaiiii完成签到,获得积分10
17秒前
科研通AI2S应助鲤鱼白玉采纳,获得10
18秒前
18秒前
不安慕蕊发布了新的文献求助10
19秒前
20秒前
满意的柏柳完成签到,获得积分10
21秒前
乐乐应助854fycchjh采纳,获得10
21秒前
orixero应助chrissylaiiii采纳,获得10
22秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794