Full convolutional network based multiple side‐output fusion architecture for the segmentation of rectal tumors in magnetic resonance images: A multi‐vendor study

分割 人工智能 计算机科学 豪斯多夫距离 模式识别(心理学) 磁共振成像 Sørensen–骰子系数 感兴趣区域 卷积神经网络 特征(语言学) 相似性(几何) 块(置换群论) 图像分割 计算机视觉 数学 放射科 图像(数学) 医学 哲学 语言学 几何学
作者
Mengmeng Wang,Peiyi Xie,Ran Zhao,Junming Jian,Rui Zhang,Wei Xia,Tao Yu,Caifeng Ni,Jinhui Gu,Xin Gao,Xiaochun Meng
出处
期刊:Medical Physics [Wiley]
卷期号:46 (6): 2659-2668 被引量:12
标识
DOI:10.1002/mp.13541
摘要

Accurate segmentation of rectal tumors is a basic and crucial task for diagnosis and treatment of rectal cancer. To avoid tedious manual delineation, an automatic rectal tumor segmentation model is proposed.A pretrained Resnet50 model was introduced for feature extraction. To reduce the complexity of the model, all layers after the 13th residual block of ResNet50 were removed, and three side-output modules were added to the hidden layer of ResNet50 to guide multiscale feature learning. The final boundaries of tumors were determined by fusion of the predictions from side-output modules. The proposed model was compared with two other models, and the effects of different region of interest (ROI) sizes, loss functions, and side-output fusion strategy were also evaluated.The models were trained and evaluated on data from four clinical centers; T2-weighted magnetic resonance images (T2W-MRIs) from 461 patients in the first clinical center were used for training, while T2W-MRIs from 51 patients in the same clinical center and 56 patients in three other clinical centers were used for performance evaluation. The proposed model was superior to the two other models and achieved an average Dice similarity coefficient of 82.39%, sensitivity of 86.32%, specificity of 92.25%, and Hausdorff distance of 12.10 px. In addition, when the ROI contained rectal tumors, the smaller the ROI size, the higher the segmentation accuracy. For a certain ROI size, there were no considerable differences in segmentation results among the loss functions. Compared to the models with single side-output module, the proposed model performed better.The results show that the proposed model has potential clinical applications in rectal cancer treatment, particularly with regard to therapeutic response evaluation and preoperative planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枯叶蝶完成签到 ,获得积分10
1秒前
MingQue完成签到,获得积分10
1秒前
superxin完成签到,获得积分10
1秒前
louis完成签到,获得积分10
2秒前
科研达人完成签到,获得积分10
2秒前
2秒前
啵叽一口完成签到,获得积分10
2秒前
凯凯搞科研完成签到,获得积分10
3秒前
Sandy完成签到,获得积分10
3秒前
3秒前
3秒前
是小雨呀发布了新的文献求助10
4秒前
刘若鑫完成签到,获得积分10
4秒前
LI完成签到,获得积分10
5秒前
jtksbf完成签到 ,获得积分10
5秒前
单薄咖啡豆完成签到,获得积分10
6秒前
伶俐向薇完成签到,获得积分10
6秒前
Fin2046完成签到,获得积分10
6秒前
虚幻白桃完成签到,获得积分10
7秒前
7秒前
Oliver完成签到,获得积分10
7秒前
ndndd完成签到,获得积分10
7秒前
我是米米完成签到 ,获得积分10
9秒前
LSH完成签到 ,获得积分10
9秒前
复杂诗霜发布了新的文献求助10
9秒前
emm泓发布了新的文献求助10
9秒前
科研通AI2S应助粉红小海星采纳,获得10
10秒前
uouuo完成签到 ,获得积分10
11秒前
bao完成签到,获得积分10
11秒前
锵锵铛铛完成签到,获得积分10
11秒前
《子非鱼》完成签到,获得积分10
11秒前
Hrentiken完成签到,获得积分10
11秒前
趣乐多完成签到,获得积分10
12秒前
13秒前
13秒前
庾储完成签到,获得积分10
14秒前
libiqing77完成签到,获得积分10
14秒前
walongjushi完成签到 ,获得积分10
14秒前
小于完成签到,获得积分10
14秒前
迅速文龙完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510889
求助须知:如何正确求助?哪些是违规求助? 3093660
关于积分的说明 9218106
捐赠科研通 2788030
什么是DOI,文献DOI怎么找? 1529995
邀请新用户注册赠送积分活动 710681
科研通“疑难数据库(出版商)”最低求助积分说明 706311