锂(药物)
材料科学
离子
纳米技术
组合化学
化学
有机化学
内科学
医学
作者
Tieheng Sun,Zongjun Li,Xinbo Zhang
出处
期刊:Research
[AAAS00]
日期:2018-01-01
卷期号:2018
被引量:17
摘要
Organic electrode materials are receiving ever-increasing research interest due to their combined advantages, including resource renewability, low cost, and environmental friendliness. However, their practical applications are still terribly plagued by low conductivity, poor rate capability, solubility in electrolyte, and low density/utilization of active groups. In response, herein, as a proof-of-concept experiment, C=N and C=O bonds are synergically integrated into the backbone of pentacene to finely tune the electronic structures of pentacene. Unexpectedly, the firstly obtained unique 5,7,11,14-tetraaza-6,13-pentacenequinone/reduced graphene oxide (TAPQ/RGO) composite exhibits superior electrochemical performances, including an ultra-stable cycling stability (up to 2400 cycles) and good rate capability (174 mAh g-1 even at a high current density of 3.2 A g-1), which might be attributed to the abundant active groups, π-conjugated molecular structure, leaf-like morphology, and the interaction between TAPQ and graphene.
科研通智能强力驱动
Strongly Powered by AbleSci AI