糖尿病性心肌病
内科学
心功能曲线
氧化应激
芦丁
医学
糖尿病
纤维化
内分泌学
心肌纤维化
心肌病
心力衰竭
化学
抗氧化剂
生物化学
作者
Ruo Huang,Zhen-dong SHI,Li Chen,Yanqun Zhang,Jing Li,Yi An
标识
DOI:10.1016/j.ejphar.2017.08.023
摘要
Rutin, a natural bioflavonoid, has demonstrated anti-diabetic and anti-oxidative bioactivity. Oxidative stress is a potential therapeutic target for diabetic cardiomyopathy. We investigated whether rutinadministration (60mg/kg body weight) reduces diabetic cardiomyopathy in a diabetic ApoE knock out mouse model. Diabetes was induced in ApoEknockout mice (male, C57BL/6 background) with a high fat diet combined with injection of streptozotocin. Cardiac function was evaluated by echocardiography and cardiac catheter hemodynamic analysis. Cardiac myocardial hypertrophy, myocardial fibrosis, lipid content, myocardial capillary density, and oxidative stress were detected by a series of histopathological analyses, western blotting, and reactive oxygen species analysis. Diabetic mice showed myocardial hypertrophy, lipid accumulation, myocardial fibrosis, elevated collagen content, deteriorating oxidative stress, and left ventricular systolic and diastolic dysfunction. Rutin reversed the myocardial hypertrophy, alleviated extracellular collagen deposition, and lipid accumulation, but increased capillary density in diabetic myocardial tissues. Moreover, rutin substantially improved cardiac function while decreasing blood glucose and lipid content. Therapeutic rutin administration reduced cardiac remodeling and improved myocardial function in diabetic mice, at least in part by reducing oxidative damage and ectopic lipid deposition, inhibiting fibrosis, and promoting angiogenesis. Thus, rutin may represent a potential therapeutic agent for diabetic cardiomyopathy.
科研通智能强力驱动
Strongly Powered by AbleSci AI