Application of Near Infrared Spectroscopy (NIRs), PCA and PLS models for the analysis of dried medicinal plants

偏最小二乘回归 化学计量学 主成分分析 近红外光谱 化学 样品制备 光谱学 红外光谱学 色谱法 分析化学(期刊) 生物系统 人工智能 计算机科学 机器学习 物理 有机化学 量子力学 生物
作者
Jasenka Gajdoš Kljusurić,Davor Valinger,Ana Jurinjak Tušek,Maja Benković,Tamara Jurina
链接
摘要

In traditional medicine, botanicals and medicinal plants in their natural and processed form are widely used [1] due to their medicinal and antioxidant properties. Numerous analytical methods have been developed for the analysis of chemical composition of medicinal plants extracts like gas chromatography (GC), mass spectrometry (MS), thin layer chromatography (TLC), UV spectrometry, and high performance liquid chromatography (HPLC). All these methods are precise but expensive, time-consuming and require many reagents. As an alternative, near infrared spectroscopy (NIRs), as a simple, selective, and environmentally friendly method , [2], can be used. NIR spectroscopy is a non-destructive measurement method that allows intact measuring, without any additional sample preparation or pre-treatment. Use of spectroscopy in the near infrared region allows a wide range of applications in the food chain production, from control of raw materials to intermediary and final products [3] in order to provide a quality guarantee for consumers. NIR spectroscopy is based on the electromagnetic absorption in the near infrared region. Spectral analysis has to be assisted with various chemometric techniques, such as multiple linear regression analysis (MLRA), principal component analysis (PCA) and partial least squares regression (PLSR) [4]. Chemometric techniques and chemometric modelling have become an integral part of spectral data analysis which also includes pre-processing of NIR spectra. The pre-processing objective is removal of physical phenomena in the spectra in order to improve the subsequent multivariate regression, classification model or exploratory analysis [5]. In this work, most widely used pre-processing techniques including (i) scatter-correction methods and (ii) spectral derivatives are explained through analysis of spectra of dried medicinal plants collected during the size reduction process (milling), as well as during analysis of the kinetics of the solid-liquid extraction process using water as a solvent [6]. In order to identify patterns in large set of data and express the data to highlight similarities and differences among them, PCA was used. PCA presents the pattern of similarity of the observations and the variables by displaying them as points in maps [7]. PLS regression was used to predict or analyse a set of dependent variables from a set of independent variables or predictors. The predictive ability of a PLS model is expressed as one or more statistical measures. Which parameter should be used is described by R-Squared Coefficient, Ratio of standard error of Performance to standard Deviation (RPD) and Range Error Ratio (RER).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高数数完成签到 ,获得积分10
刚刚
liu发布了新的文献求助30
刚刚
娄十三完成签到 ,获得积分10
1秒前
1秒前
汉堡包应助yeezy123采纳,获得10
1秒前
线呢完成签到 ,获得积分10
2秒前
徐徐完成签到 ,获得积分10
2秒前
luxixi发布了新的文献求助10
2秒前
领导范儿应助大胆一刀采纳,获得10
2秒前
3秒前
3秒前
wzy关闭了wzy文献求助
4秒前
动听白秋完成签到 ,获得积分10
5秒前
Chemvenus发布了新的文献求助20
5秒前
5秒前
傅姐完成签到 ,获得积分10
5秒前
英姑应助猪猪hero采纳,获得10
7秒前
8秒前
花痴的易真完成签到,获得积分10
9秒前
9秒前
小鞠发布了新的文献求助10
10秒前
求知欲发布了新的文献求助10
10秒前
泡儿夫完成签到,获得积分10
10秒前
11秒前
烟花应助alexyang采纳,获得10
12秒前
Frank应助过时的小海豚采纳,获得10
12秒前
专注白昼完成签到,获得积分10
13秒前
小青椒应助little elvins采纳,获得30
13秒前
13秒前
淳恨战士完成签到,获得积分10
14秒前
狂野傲珊发布了新的文献求助10
14秒前
tianchen完成签到,获得积分10
15秒前
高屋建瓴完成签到,获得积分10
15秒前
wonderful发布了新的文献求助10
15秒前
wanci应助端庄煎饼采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
时光悠应助科研的小狗采纳,获得30
16秒前
顾矜应助猪猪hero采纳,获得10
17秒前
我不吃葱完成签到 ,获得积分10
18秒前
逍遥关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483