Application of Near Infrared Spectroscopy (NIRs), PCA and PLS models for the analysis of dried medicinal plants

偏最小二乘回归 化学计量学 主成分分析 近红外光谱 化学 样品制备 光谱学 红外光谱学 色谱法 分析化学(期刊) 生物系统 人工智能 计算机科学 机器学习 物理 有机化学 量子力学 生物
作者
Jasenka Gajdoš Kljusurić,Davor Valinger,Ana Jurinjak Tušek,Maja Benković,Tamara Jurina
链接
摘要

In traditional medicine, botanicals and medicinal plants in their natural and processed form are widely used [1] due to their medicinal and antioxidant properties. Numerous analytical methods have been developed for the analysis of chemical composition of medicinal plants extracts like gas chromatography (GC), mass spectrometry (MS), thin layer chromatography (TLC), UV spectrometry, and high performance liquid chromatography (HPLC). All these methods are precise but expensive, time-consuming and require many reagents. As an alternative, near infrared spectroscopy (NIRs), as a simple, selective, and environmentally friendly method , [2], can be used. NIR spectroscopy is a non-destructive measurement method that allows intact measuring, without any additional sample preparation or pre-treatment. Use of spectroscopy in the near infrared region allows a wide range of applications in the food chain production, from control of raw materials to intermediary and final products [3] in order to provide a quality guarantee for consumers. NIR spectroscopy is based on the electromagnetic absorption in the near infrared region. Spectral analysis has to be assisted with various chemometric techniques, such as multiple linear regression analysis (MLRA), principal component analysis (PCA) and partial least squares regression (PLSR) [4]. Chemometric techniques and chemometric modelling have become an integral part of spectral data analysis which also includes pre-processing of NIR spectra. The pre-processing objective is removal of physical phenomena in the spectra in order to improve the subsequent multivariate regression, classification model or exploratory analysis [5]. In this work, most widely used pre-processing techniques including (i) scatter-correction methods and (ii) spectral derivatives are explained through analysis of spectra of dried medicinal plants collected during the size reduction process (milling), as well as during analysis of the kinetics of the solid-liquid extraction process using water as a solvent [6]. In order to identify patterns in large set of data and express the data to highlight similarities and differences among them, PCA was used. PCA presents the pattern of similarity of the observations and the variables by displaying them as points in maps [7]. PLS regression was used to predict or analyse a set of dependent variables from a set of independent variables or predictors. The predictive ability of a PLS model is expressed as one or more statistical measures. Which parameter should be used is described by R-Squared Coefficient, Ratio of standard error of Performance to standard Deviation (RPD) and Range Error Ratio (RER).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安德鲁完成签到,获得积分10
刚刚
daqisong完成签到,获得积分10
5秒前
詹广旭完成签到 ,获得积分10
6秒前
6秒前
changping应助112233采纳,获得20
10秒前
00关闭了00文献求助
11秒前
12秒前
不周完成签到,获得积分20
12秒前
开朗的山彤完成签到,获得积分10
12秒前
喜文完成签到 ,获得积分10
15秒前
舒心的秋荷完成签到 ,获得积分10
16秒前
谷曼婷发布了新的文献求助10
17秒前
隐形的傲易完成签到 ,获得积分10
18秒前
19秒前
疾风知劲草完成签到,获得积分10
19秒前
20秒前
汉堡包应助whale采纳,获得10
23秒前
CodeCraft应助依米zhang采纳,获得10
24秒前
无情修杰完成签到 ,获得积分10
24秒前
文静的牛排完成签到,获得积分10
25秒前
25秒前
顺心的千萍完成签到,获得积分10
26秒前
无花果应助聪慧的凝海采纳,获得10
27秒前
2316690509完成签到 ,获得积分10
27秒前
27秒前
20年单身狗完成签到,获得积分10
29秒前
陈诗羽完成签到,获得积分10
29秒前
cz发布了新的文献求助10
30秒前
皮卡丘比特应助lalala采纳,获得20
30秒前
爱听歌从蓉关注了科研通微信公众号
31秒前
香蕉觅云应助zh采纳,获得10
31秒前
32秒前
金金金完成签到,获得积分10
33秒前
34秒前
LONG发布了新的文献求助10
36秒前
红烧肉耶发布了新的文献求助10
37秒前
kirazou完成签到,获得积分10
37秒前
lwj完成签到,获得积分10
38秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511