Application of Near Infrared Spectroscopy (NIRs), PCA and PLS models for the analysis of dried medicinal plants

偏最小二乘回归 化学计量学 主成分分析 近红外光谱 化学 样品制备 光谱学 红外光谱学 色谱法 分析化学(期刊) 生物系统 人工智能 计算机科学 机器学习 物理 有机化学 量子力学 生物
作者
Jasenka Gajdoš Kljusurić,Davor Valinger,Ana Jurinjak Tušek,Maja Benković,Tamara Jurina
链接
摘要

In traditional medicine, botanicals and medicinal plants in their natural and processed form are widely used [1] due to their medicinal and antioxidant properties. Numerous analytical methods have been developed for the analysis of chemical composition of medicinal plants extracts like gas chromatography (GC), mass spectrometry (MS), thin layer chromatography (TLC), UV spectrometry, and high performance liquid chromatography (HPLC). All these methods are precise but expensive, time-consuming and require many reagents. As an alternative, near infrared spectroscopy (NIRs), as a simple, selective, and environmentally friendly method , [2], can be used. NIR spectroscopy is a non-destructive measurement method that allows intact measuring, without any additional sample preparation or pre-treatment. Use of spectroscopy in the near infrared region allows a wide range of applications in the food chain production, from control of raw materials to intermediary and final products [3] in order to provide a quality guarantee for consumers. NIR spectroscopy is based on the electromagnetic absorption in the near infrared region. Spectral analysis has to be assisted with various chemometric techniques, such as multiple linear regression analysis (MLRA), principal component analysis (PCA) and partial least squares regression (PLSR) [4]. Chemometric techniques and chemometric modelling have become an integral part of spectral data analysis which also includes pre-processing of NIR spectra. The pre-processing objective is removal of physical phenomena in the spectra in order to improve the subsequent multivariate regression, classification model or exploratory analysis [5]. In this work, most widely used pre-processing techniques including (i) scatter-correction methods and (ii) spectral derivatives are explained through analysis of spectra of dried medicinal plants collected during the size reduction process (milling), as well as during analysis of the kinetics of the solid-liquid extraction process using water as a solvent [6]. In order to identify patterns in large set of data and express the data to highlight similarities and differences among them, PCA was used. PCA presents the pattern of similarity of the observations and the variables by displaying them as points in maps [7]. PLS regression was used to predict or analyse a set of dependent variables from a set of independent variables or predictors. The predictive ability of a PLS model is expressed as one or more statistical measures. Which parameter should be used is described by R-Squared Coefficient, Ratio of standard error of Performance to standard Deviation (RPD) and Range Error Ratio (RER).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaolee完成签到 ,获得积分10
1秒前
情怀应助LYH采纳,获得10
1秒前
1秒前
Ampace小老弟完成签到 ,获得积分10
2秒前
2秒前
朵朵完成签到,获得积分10
3秒前
狄鹤轩发布了新的文献求助10
3秒前
郑一发布了新的文献求助10
3秒前
大个应助小一采纳,获得10
4秒前
打打应助baekhyun采纳,获得10
4秒前
爆米花应助奶味蓝采纳,获得20
4秒前
12发布了新的文献求助10
4秒前
5秒前
5秒前
Tong发布了新的文献求助30
7秒前
7秒前
vivianfou完成签到,获得积分10
8秒前
燕小丙完成签到,获得积分10
8秒前
Vaibhav发布了新的文献求助10
9秒前
millie完成签到,获得积分20
11秒前
美满的书南完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
虚幻井发布了新的文献求助10
17秒前
小白完成签到,获得积分10
17秒前
18秒前
小一完成签到,获得积分10
18秒前
18秒前
舒服的八宝粥完成签到 ,获得积分10
21秒前
华仔应助你hao采纳,获得10
21秒前
Fx完成签到,获得积分10
22秒前
22秒前
捏捏捏完成签到 ,获得积分10
23秒前
上官若男应助zhangfuchao采纳,获得10
24秒前
25秒前
善学以致用应助大方念云采纳,获得10
26秒前
若兰完成签到,获得积分10
26秒前
深情安青应助Fx采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522937
求助须知:如何正确求助?哪些是违规求助? 3103910
关于积分的说明 9267916
捐赠科研通 2800665
什么是DOI,文献DOI怎么找? 1537075
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759