Application of Near Infrared Spectroscopy (NIRs), PCA and PLS models for the analysis of dried medicinal plants

偏最小二乘回归 化学计量学 主成分分析 近红外光谱 化学 样品制备 光谱学 红外光谱学 色谱法 分析化学(期刊) 生物系统 人工智能 计算机科学 机器学习 物理 有机化学 量子力学 生物
作者
Jasenka Gajdoš Kljusurić,Davor Valinger,Ana Jurinjak Tušek,Maja Benković,Tamara Jurina
链接
摘要

In traditional medicine, botanicals and medicinal plants in their natural and processed form are widely used [1] due to their medicinal and antioxidant properties. Numerous analytical methods have been developed for the analysis of chemical composition of medicinal plants extracts like gas chromatography (GC), mass spectrometry (MS), thin layer chromatography (TLC), UV spectrometry, and high performance liquid chromatography (HPLC). All these methods are precise but expensive, time-consuming and require many reagents. As an alternative, near infrared spectroscopy (NIRs), as a simple, selective, and environmentally friendly method , [2], can be used. NIR spectroscopy is a non-destructive measurement method that allows intact measuring, without any additional sample preparation or pre-treatment. Use of spectroscopy in the near infrared region allows a wide range of applications in the food chain production, from control of raw materials to intermediary and final products [3] in order to provide a quality guarantee for consumers. NIR spectroscopy is based on the electromagnetic absorption in the near infrared region. Spectral analysis has to be assisted with various chemometric techniques, such as multiple linear regression analysis (MLRA), principal component analysis (PCA) and partial least squares regression (PLSR) [4]. Chemometric techniques and chemometric modelling have become an integral part of spectral data analysis which also includes pre-processing of NIR spectra. The pre-processing objective is removal of physical phenomena in the spectra in order to improve the subsequent multivariate regression, classification model or exploratory analysis [5]. In this work, most widely used pre-processing techniques including (i) scatter-correction methods and (ii) spectral derivatives are explained through analysis of spectra of dried medicinal plants collected during the size reduction process (milling), as well as during analysis of the kinetics of the solid-liquid extraction process using water as a solvent [6]. In order to identify patterns in large set of data and express the data to highlight similarities and differences among them, PCA was used. PCA presents the pattern of similarity of the observations and the variables by displaying them as points in maps [7]. PLS regression was used to predict or analyse a set of dependent variables from a set of independent variables or predictors. The predictive ability of a PLS model is expressed as one or more statistical measures. Which parameter should be used is described by R-Squared Coefficient, Ratio of standard error of Performance to standard Deviation (RPD) and Range Error Ratio (RER).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
style完成签到,获得积分20
刚刚
小青椒应助csy0303采纳,获得30
刚刚
元白发布了新的文献求助10
刚刚
shineshine发布了新的文献求助10
2秒前
阿德利企鹅完成签到 ,获得积分10
2秒前
2秒前
丘比特应助TianY天翊采纳,获得10
2秒前
dd完成签到,获得积分10
3秒前
3秒前
Lucas应助研友_Z7QedL采纳,获得10
4秒前
4秒前
666发布了新的文献求助10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
爱笑的若雁完成签到,获得积分10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Hiccupsssss完成签到,获得积分10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
6秒前
田田应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
chenqiumu应助zzzshy采纳,获得30
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
852应助高志博采纳,获得10
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884