Automated detection of posterior restorations in permanent teeth using artificial intelligence on intraoral photographs

汞齐(化学) 分类 金标准(测试) 计算机科学 后牙 牙科 人工智能 接收机工作特性 口腔正畸科 医学 机器学习 化学 电极 物理化学 内科学
作者
Paula Engels,Ole Meyer,Jule Schönewolf,Anne Schlickenrieder,Reinhard Hickel,Marc Hesenius,Volker Gruhn,Jan Kühnisch
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:121: 104124-104124 被引量:16
标识
DOI:10.1016/j.jdent.2022.104124
摘要

Intraoral photographs might be considered the machine-readable equivalent of a clinical-based visual examination and can potentially be used to detect and categorize dental restorations. The first objective of this study was to develop a deep learning-based convolutional neural network (CNN) for automated detection and categorization of posterior composite, cement, amalgam, gold and ceramic restorations on clinical photographs. Second, this study aimed to determine the diagnostic accuracy for the developed CNN (test method) compared to that of an expert evaluation (reference standard). The whole image set of 1761 images (483 of unrestored teeth, 570 of composite restorations, 213 of cements, 278 of amalgam restorations, 125 of gold restorations and 92 of ceramic restorations) was divided into a training set (N = 1407, 401, 447, 66, 231, 93, and 169, respectively) and a test set (N = 354, 82, 123, 26, 47, 32, and 44). The expert diagnoses served as a reference standard for cyclic training and repeated evaluation of the CNN (ResNeXt-101–32 × 8d), which was trained by using image augmentation and transfer learning. Statistical analysis included the calculation of contingency tables, areas under the receiver operating characteristic curve and saliency maps. After training was complete, the CNN was able to categorize restorations correctly with the following diagnostic accuracy values: 94.9% for unrestored teeth, 92.9% for composites, 98.3% for cements, 99.2% for amalgam restorations, 99.4% for gold restorations and 97.8% for ceramic restorations. It was possible to categorize different types of posterior restorations on intraoral photographs automatically with a good diagnostic accuracy. Dental diagnostics might be supported by artificial intelligence-based algorithms in the future. However, further improvements are needed to increase accuracy and practicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
creedli发布了新的文献求助10
刚刚
毛豆爸爸完成签到,获得积分0
刚刚
mary完成签到,获得积分10
10秒前
RSHL完成签到 ,获得积分10
12秒前
伶俐的春天完成签到 ,获得积分10
13秒前
聪明凌柏完成签到 ,获得积分10
13秒前
sowhat完成签到 ,获得积分10
16秒前
20秒前
27秒前
标致一手完成签到 ,获得积分10
31秒前
一颗红葡萄完成签到 ,获得积分10
31秒前
科研通AI2S应助MrLee2R采纳,获得10
33秒前
木光发布了新的文献求助10
33秒前
细心的向日葵完成签到,获得积分10
34秒前
Alex完成签到,获得积分10
39秒前
俏皮诺言完成签到,获得积分10
41秒前
握瑾怀瑜完成签到 ,获得积分0
42秒前
鲤鱼依白完成签到 ,获得积分10
45秒前
烂漫的煎饼完成签到 ,获得积分10
46秒前
Phoenix ZHANG完成签到 ,获得积分10
46秒前
48秒前
XuChen发布了新的文献求助10
51秒前
51秒前
wp4455777完成签到,获得积分10
53秒前
XuChen完成签到,获得积分10
55秒前
醒略略发布了新的文献求助20
55秒前
进退须臾完成签到,获得积分10
58秒前
eyu完成签到,获得积分10
1分钟前
jameslee04完成签到 ,获得积分10
1分钟前
李健的小迷弟应助醒略略采纳,获得10
1分钟前
Muccio完成签到 ,获得积分10
1分钟前
PM2555完成签到 ,获得积分10
1分钟前
淞淞于我完成签到 ,获得积分10
1分钟前
Denmark完成签到 ,获得积分10
1分钟前
认真以云完成签到 ,获得积分10
1分钟前
楚奇完成签到,获得积分10
1分钟前
跳跃的白云完成签到 ,获得积分10
1分钟前
优雅的千雁完成签到,获得积分10
1分钟前
幼荷完成签到 ,获得积分10
1分钟前
01259完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793757
关于积分的说明 7807197
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350