过电位
硫化
材料科学
析氧
分解水
氢氧化物
电催化剂
化学工程
催化作用
无机化学
镍
氯化物
电化学
化学
冶金
电极
硫黄
物理化学
工程类
光催化
生物化学
作者
Lei Tan,Jiangtao Yu,Chao Wang,Haifeng Wang,Xien Liu,Hongtao Gao,Liantao Xin,Dongzheng Liu,Haiping Li,Tianrong Zhan
标识
DOI:10.1002/adfm.202200951
摘要
Abstract The development of a high‐performance electrocatalyst for oxygen evolution reaction (OER) is imperative but challenging. Here, a partial sulfidation route to construct Ni 2 Fe‐LDH/FeNi 2 S 4 heterostructure on nickel foam (Ni 2 Fe‐LDH/FeNi 2 S 4 /NF) by adjusting the hydrothermal duration is reported. The heterostructures afford abundant hydroxide/sulfide interfaces that offer plentiful active sites, rapid charge and mass transfer, favorable adsorption energy to oxygenated species (OH − and OOH) evidenced by the density functional theory calculations, which synergistically boost the alkaline water oxidation. In the 1.0 m KOH solution, Ni 2 Fe‐LDH/FeNi 2 S 4 /NF exhibits an excellent OER catalytic activity with a much smaller overpotential (240 mV) to reach the current density of 100 mA cm −2 than single‐phase Ni 2 Fe‐LDH/NF (279 mV) or FeNi 2 S 4 /NF (271 mV). More impressively, 2000 cycles of cyclic voltammetry scan for water oxidation results in the formation of a sulfate layer over the catalyst. The corresponding post‐catalyst demonstrates better OER activity and durability than the initial one in the alkaline simulated seawater electrolyte. The post‐Ni 2 Fe‐LDH/FeNi 2 S 4 /NF delivers smaller overpotential (250 mV) at 100 mA cm −2 and longer stability time than the original form (260 mV). The post‐formed sulfate passivating layer is responsible for the outstanding corrosion resistance of the salty‐water oxidation anode since it can effectively repel chloride.
科研通智能强力驱动
Strongly Powered by AbleSci AI