Theory‐Guided Material Design Enabling High‐Performance Multifunctional Semitransparent Organic Photovoltaics without Optical Modulations

材料科学 有机太阳能电池 光电子学 光伏 带隙 能量转换效率 量子效率 吸收(声学) 纳米技术 光伏系统 电气工程 复合材料 聚合物 工程类
作者
Wuyue Liu,Shaoming Sun,Shengjie Xu,Hao Zhang,Yingqi Zheng,Zhixiang Wei,Xiaozhang Zhu
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (18) 被引量:68
标识
DOI:10.1002/adma.202200337
摘要

Semitransparent organic photovoltaics (ST-OPVs) have drawn great attention for promising applications in building-integrated photovoltaics, providing additional power generation for daily use. A previously proposed strategy, "complementary NIR absorption," is widely applied for high-performance ST-OPVs. However, rational material design toward high performance has not been achieved. In this work, an external quantum efficiency (EQE) model describing this strategy is developed to explore the full potential of material design on ST-OPV performance. Guided by the model, a novel nonfullerene acceptor (NFA), ATT-9, is designed and synthesized, which possesses optimal bandgap for ST-OPVs, achieving a record short-circuit current density of 30 mA cm-2 and a power conversion efficiency of 13.40%, the highest value among devices based on NFAs with bandgaps lower than 1.2 eV. It is notworthy that, at such a low bandgap, the energy loss of the device is only 0.58 eV, which is attributed to the low energetic disorder confirmed by an ultralow Urbach energy of 21.6 meV. Benefiting from the optimal bandgap and low energy loss, the ATT-9-based ST-OPV achieves a high light utilization efficiency of 3.33% without optical modulations, and meanwhile shows excellent thermal insulation, exceeding the commercial 3M heat-insulating window film, demonstrating the outstanding application prospects of multifunctional ST-OPVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称发布了新的文献求助10
1秒前
FashionBoy应助张家源采纳,获得10
1秒前
1秒前
今后应助谁家那小谁采纳,获得10
1秒前
hesven发布了新的文献求助10
1秒前
苻青完成签到,获得积分10
2秒前
2秒前
从容妙晴完成签到,获得积分10
2秒前
求知的菜鸟完成签到,获得积分10
3秒前
CipherSage应助个性的半青采纳,获得10
3秒前
Jasper应助haveatry采纳,获得10
4秒前
SciGPT应助桃青采纳,获得10
5秒前
张雯雯发布了新的文献求助10
5秒前
JamesPei应助852采纳,获得10
6秒前
wh雨发布了新的文献求助10
6秒前
CHINA_C13发布了新的文献求助10
7秒前
7秒前
沐秋完成签到,获得积分10
7秒前
8秒前
JZ133发布了新的文献求助10
8秒前
情怀应助咚咚拐001采纳,获得10
8秒前
丰富的元灵完成签到,获得积分10
8秒前
瞿寒完成签到,获得积分10
8秒前
科研通AI2S应助z.采纳,获得10
8秒前
9秒前
10秒前
ikun0000完成签到,获得积分10
11秒前
所所应助优雅怀柔采纳,获得10
12秒前
木华完成签到,获得积分10
12秒前
liquss完成签到,获得积分10
14秒前
外向易形完成签到,获得积分10
14秒前
wh雨完成签到,获得积分20
14秒前
英俊的铭应助Ab采纳,获得10
14秒前
王灿灿完成签到,获得积分10
15秒前
adma完成签到,获得积分10
15秒前
15秒前
16秒前
dong发布了新的文献求助10
16秒前
16秒前
负责冰凡完成签到,获得积分20
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253