Customized Carbon Dots with Predictable Optical Properties Synthesized at Room Temperature Guided by Machine Learning

荧光 乙二胺 材料科学 溶解度 乙烯醇 纳米技术 光漂白 聚合物 化学 光学 有机化学 物理 复合材料
作者
Qin Hong,Xiaoyuan Wang,Yating Gao,Jian Lv,Binbin Chen,Da‐Wei Li,Ruo‐Can Qian
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (3): 998-1009 被引量:52
标识
DOI:10.1021/acs.chemmater.1c03220
摘要

Fluorescent carbon dots (CDs) have been increasingly used in fluorescence detection and imaging based on their tunable fluorescence (FL) and resistance to photobleaching. However, the fast and reliable design of fluorescent CDs with specific optical properties involves a number of factors, such as the concentration of precursors, reaction time, and solvents. Therefore, it is usually considered difficult to design CDs with favorable optical properties. Herein, we report an extreme gradient boosting (XGBoost) model for guiding the fabrication of CDs with high FL intensity and tunable emission from p-benzoquinone (PBQ) and ethylenediamine (EDA) in different solvents at room temperature. Among a variety of studied machine learning models, XGBoost shows the best performance in the field of material synthesis, with a prediction coefficient of determination (R2) higher than 0.96. The XGBoost model can effectively predict the optical properties of CDs, including the maximum FL intensity and emission centers. Guided by the XGBoost model, various green or blue fluorescent CDs with adjustable emission centers and solubility properties are designed and fabricated accurately. These CDs are successfully applied for Fe3+ detection, sustained drug release, whole-cell imaging, and poly(vinyl alcohol) (PVA) film preparation. These results suggest the great potential of the combination of machine learning and CD synthesis as an effective strategy to help researchers realize accurate selection of reasonable CDs with individual customized properties to achieve different goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助干净初彤采纳,获得10
刚刚
刚刚
坚强铸海完成签到,获得积分20
1秒前
1秒前
寸寸发布了新的文献求助10
4秒前
陶醉元冬完成签到,获得积分10
4秒前
5秒前
5秒前
lijiajun完成签到,获得积分10
6秒前
6秒前
赘婿应助靖123456采纳,获得10
6秒前
7秒前
QDU发布了新的文献求助10
7秒前
Mimi完成签到,获得积分10
9秒前
10秒前
欣慰的茉莉完成签到 ,获得积分10
10秒前
gds完成签到,获得积分10
10秒前
MorningStar完成签到,获得积分10
10秒前
11秒前
cruise发布了新的文献求助10
11秒前
干净初彤发布了新的文献求助10
12秒前
小二郎应助方方采纳,获得10
13秒前
13秒前
QDU完成签到,获得积分10
14秒前
阿里山完成签到,获得积分10
14秒前
Hello应助无曲采纳,获得10
14秒前
hh完成签到 ,获得积分10
14秒前
宁宁发布了新的文献求助10
15秒前
Owen应助PARALLEL采纳,获得10
16秒前
情怀应助生产队的建设者采纳,获得10
16秒前
研友_ZzrWKZ完成签到 ,获得积分10
16秒前
17秒前
luckyd完成签到 ,获得积分0
18秒前
高强完成签到,获得积分10
19秒前
寸寸完成签到,获得积分10
19秒前
19秒前
junjun发布了新的文献求助10
21秒前
科研通AI5应助shhoing采纳,获得10
21秒前
eksue111发布了新的文献求助10
23秒前
zho应助sirius采纳,获得10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486950
求助须知:如何正确求助?哪些是违规求助? 3075033
关于积分的说明 9139262
捐赠科研通 2767282
什么是DOI,文献DOI怎么找? 1518530
邀请新用户注册赠送积分活动 703148
科研通“疑难数据库(出版商)”最低求助积分说明 701627