化学
木筏
适体
凝血酶
组合化学
链式转移
聚糖
可逆加成-断裂链转移聚合
生物物理学
聚合
生物化学
自由基聚合
有机化学
分子生物学
糖蛋白
血小板
生物
免疫学
聚合物
作者
Luofeng Su,Jianwen Wan,Qiong Hu,Dongdong Qin,Dongxue Han,Li Niu
标识
DOI:10.1021/acs.analchem.3c00210
摘要
The assay of thrombin levels is integral to the assessment of coagulation function and clinical screening of coagulation disorder-related diseases. In this work, we illustrate the ingenious use of the target-synergized biologically mediated reversible addition-fragmentation chain transfer (RAFT) polymerization (tsBMRP) as a novel amplification strategy for the electrochemical aptamer-based biosensing of thrombin at the femtomolar levels. Briefly, the tsBMRP-based strategy relies on the boronate affinity-mediated decoration of the glycan chain(s) of the target itself with RAFT agents and the subsequent recruitment of signal labels via BMRP, mediated by the direct reduction of RAFT agents by NADH into initiating/propagating radicals. Obviously, the tsBMRP-based strategy is biologically friendly, low-cost, and simple in operation. As thrombin is a glycoconjugate, its electrochemical aptasensing involves the use of the thrombin-binding aptamer (TBA) as the recognition receptor, the site-specific decoration of RAFT agents to the glycan chain of thrombin via boronate affinity, and further the recruitment of ferrocene signal labels via the BMRP of ferrocenylmethyl methacrylate (FcMMA). As boronate affinity results in the decoration of each glycan chain with tens of RAFT agents while BMRP recruits hundreds of signal labels to each RAFT agent-decorated site, the tsBMRP-based strategy allows us to detect thrombin at a concentration of 35.3 fM. This electrochemical aptasensor is highly selective, and its applicability to thrombin detection in serum samples has been further demonstrated. The merits of high sensitivity and selectivity, low cost, good anti-interference capability, and simple operation make the tsBMRP-based electrochemical thrombin aptasensor great promise in biomedical and clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI