Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images

胶质母细胞瘤 基质金属蛋白酶 病态的 计算机科学 表达式(计算机科学) 人工智能 基质金属蛋白酶9 基质金属蛋白酶3 金属蛋白酶 病理 生物信息学 计算生物学 医学 癌症研究 生物 内科学 程序设计语言
作者
Zhenru Wu,Yuan Yang,Ming Chen,Yunfei Zha
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66105-x
摘要

Abstract This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were randomly allocated to the training and test cohorts for pathomics modeling. The prognostic significance of MMP9 was assessed using Kaplan–Meier and Cox regression analyses. PyRadiomics was used to extract the features of H&E-stained whole slide images. Feature selection was performed using the maximum relevance and minimum redundancy (mRMR) and recursive feature elimination (RFE) algorithms. Prediction models were created using support vector machines (SVM) and logistic regression (LR). The performance was assessed using ROC analysis, calibration curve assessment, and decision curve analysis. MMP9 expression was elevated in patients with GBM. This was an independent prognostic factor for GBM. Six features were selected for the pathomics model. The area under the curves (AUCs) of the training and test subsets were 0.828 and 0.808, respectively, for the SVM model and 0.778 and 0.754, respectively, for the LR model. The C-index and calibration plots exhibited effective estimation abilities. The pathomics score calculated using the SVM model was highly correlated with overall survival time. These findings indicate that MMP9 plays a crucial role in GBM development and prognosis. Our pathomics model demonstrated high efficacy for predicting MMP9 expression levels and prognosis of patients with GBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
合适尔槐完成签到 ,获得积分10
1秒前
2秒前
清秀芸遥发布了新的文献求助10
3秒前
curtisness应助剑舞红颜笑采纳,获得10
3秒前
4秒前
英俊的铭应助KKKZ采纳,获得10
4秒前
5秒前
7秒前
wpeng326发布了新的文献求助10
8秒前
liu完成签到 ,获得积分10
8秒前
乐乐应助尉迟冰蓝采纳,获得10
9秒前
小高宽度发布了新的文献求助10
9秒前
hajy发布了新的文献求助10
12秒前
树懒完成签到 ,获得积分10
13秒前
幸福从凝关注了科研通微信公众号
16秒前
16秒前
Novice6354完成签到 ,获得积分10
18秒前
19秒前
子龙完成签到,获得积分10
20秒前
20秒前
20秒前
嘉嘉子发布了新的文献求助10
20秒前
小水发布了新的文献求助10
21秒前
gao0505完成签到,获得积分10
23秒前
23秒前
BJM完成签到,获得积分20
23秒前
24秒前
南初完成签到 ,获得积分10
25秒前
Bethune发布了新的文献求助10
26秒前
小高宽度完成签到,获得积分10
26秒前
Akim应助三水采纳,获得10
26秒前
CipherSage应助Zilch采纳,获得10
28秒前
zwy完成签到 ,获得积分10
28秒前
28秒前
29秒前
30秒前
陆冰之发布了新的文献求助10
30秒前
英姑应助上帝178采纳,获得10
31秒前
31秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343779
求助须知:如何正确求助?哪些是违规求助? 2970859
关于积分的说明 8645455
捐赠科研通 2650916
什么是DOI,文献DOI怎么找? 1451530
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661681