Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images

胶质母细胞瘤 基质金属蛋白酶 病态的 计算机科学 表达式(计算机科学) 人工智能 基质金属蛋白酶9 基质金属蛋白酶3 金属蛋白酶 病理 生物信息学 计算生物学 医学 癌症研究 生物 内科学 程序设计语言
作者
Zhenru Wu,Yuan Yang,Ming Chen,Yunfei Zha
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66105-x
摘要

Abstract This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were randomly allocated to the training and test cohorts for pathomics modeling. The prognostic significance of MMP9 was assessed using Kaplan–Meier and Cox regression analyses. PyRadiomics was used to extract the features of H&E-stained whole slide images. Feature selection was performed using the maximum relevance and minimum redundancy (mRMR) and recursive feature elimination (RFE) algorithms. Prediction models were created using support vector machines (SVM) and logistic regression (LR). The performance was assessed using ROC analysis, calibration curve assessment, and decision curve analysis. MMP9 expression was elevated in patients with GBM. This was an independent prognostic factor for GBM. Six features were selected for the pathomics model. The area under the curves (AUCs) of the training and test subsets were 0.828 and 0.808, respectively, for the SVM model and 0.778 and 0.754, respectively, for the LR model. The C-index and calibration plots exhibited effective estimation abilities. The pathomics score calculated using the SVM model was highly correlated with overall survival time. These findings indicate that MMP9 plays a crucial role in GBM development and prognosis. Our pathomics model demonstrated high efficacy for predicting MMP9 expression levels and prognosis of patients with GBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
求助蚂蚁发布了新的文献求助10
刚刚
刚刚
科研通AI6应助小余采纳,获得10
1秒前
李爱国应助shirly采纳,获得10
1秒前
科研通AI2S应助罗杰采纳,获得100
1秒前
托托完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
LonelyJudger完成签到,获得积分10
2秒前
2秒前
尧尧完成签到,获得积分10
2秒前
svery完成签到,获得积分20
2秒前
慕容松发布了新的文献求助10
2秒前
3秒前
小鲨鱼完成签到,获得积分10
3秒前
小羊完成签到,获得积分10
3秒前
明钟达发布了新的文献求助10
4秒前
JamesPei应助张张张采纳,获得10
4秒前
啦啦啦完成签到,获得积分10
4秒前
CodeCraft应助负责的中道采纳,获得10
4秒前
每天100次完成签到,获得积分10
5秒前
看文献看到秃头完成签到,获得积分10
5秒前
momo发布了新的文献求助10
5秒前
CodeCraft应助森森采纳,获得10
5秒前
喜悦乐巧发布了新的文献求助10
5秒前
香蕉静芙发布了新的文献求助10
5秒前
jiu关注了科研通微信公众号
5秒前
Grinder发布了新的文献求助10
6秒前
6秒前
幽默的素阴完成签到 ,获得积分10
6秒前
020907完成签到 ,获得积分10
6秒前
7秒前
7秒前
snn完成签到 ,获得积分10
7秒前
7秒前
我爱科研完成签到,获得积分10
7秒前
单纯面包应助lddd采纳,获得10
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598884
求助须知:如何正确求助?哪些是违规求助? 4009687
关于积分的说明 12413038
捐赠科研通 3689309
什么是DOI,文献DOI怎么找? 2033794
邀请新用户注册赠送积分活动 1066934
科研通“疑难数据库(出版商)”最低求助积分说明 952021