催化作用
范围(计算机科学)
镁
产量(工程)
计算机科学
化学
对映选择合成
组合化学
生化工程
有机化学
物理
热力学
工程类
程序设计语言
作者
Paulina Baczewska,Michał Kulczykowski,Bartosz K. Zambroń,Joanna A. Jaszczewska‐Adamczak,Zbigniew Pakulski,Rafał Roszak,Bartosz A. Grzybowski,Jacek Młynarski
标识
DOI:10.1002/ange.202318487
摘要
Abstract Organic‐chemical literature encompasses large numbers of catalysts and reactions they can effect. Many of these examples are published merely to document the catalysts’ scope but do not necessarily guarantee that a given catalyst is “optimal”—in terms of yield or enantiomeric excess—for a particular reaction. This paper describes a Machine Learning model that aims to improve such catalyst‐reaction assignments based on the carefully curated literature data. As we show here for the case of asymmetric magnesium catalysis, this model achieves relatively high accuracy and offers out of‐the‐box predictions successfully validated by experiment, e.g., in synthetically demanding asymmetric reductions or Michael additions.
科研通智能强力驱动
Strongly Powered by AbleSci AI