Automatic Searching of Lightweight and High-Performing CNN Architectures for EEG-based Driving Fatigue Detection

脑电图 计算机科学 人工智能 语音识别 模式识别(心理学) 计算机视觉 心理学 神经科学
作者
Qingqing Li,Zhirui Luo,Ruobin Qi,Jun Zheng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2024.3400360
摘要

The increasing number of vehicles has led to a rise in traffic accidents, with fatigued driving being a major contributing factor. Bio-electrical signals, particularly electroencephalograms (EEG), have emerged as a promising avenue for detecting driving fatigue. EEG signals can provide valuable insights into a person's brain activity and state of alertness. However, the complexity of EEG signals and the need for real-time detection pose significant challenges for traditional machine learning algorithms, leading to the growing popularity of deep learning in this domain. The objective of this paper is to design lightweight and high-performing convolutional neural network (CNN) models for detecting driving fatigue using multi-channel EEG signals. These models are intended to be deployed on resource-limited devices in intelligent vehicles, enabling timely alerts for fatigued driving. Rather than manually designing the deep neural network (DNN) architecture, we adopted the neural architecture search (NAS) approach to automate the architecture design process, considering both detection performance and computational cost. To evaluate the effectiveness of our approach, we conducted experiments using two publicly available EEG datasets widely used in driving fatigue detection studies. The performance of our NAS-derived model, named FD-LiteNet, was compared with a set of state-of-the-art baseline CNN models manually designed for EEG signal analysis. The results demonstrate that FD-LiteNet achieves significantly higher detection accuracy than all baseline models with a lower computational cost. Furthermore, our findings highlight the exceptional generalization capability of FD-LiteNet, as it can be fine-tuned with a small number of new samples to adapt to new datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QYY完成签到,获得积分10
刚刚
laola完成签到,获得积分10
1秒前
标致的泥猴桃完成签到,获得积分10
3秒前
4秒前
小美完成签到 ,获得积分10
6秒前
昏睡的眼神完成签到 ,获得积分10
8秒前
彩色完成签到,获得积分10
9秒前
颜好发布了新的文献求助10
9秒前
米九完成签到,获得积分10
11秒前
月儿完成签到 ,获得积分10
12秒前
浪子完成签到,获得积分10
12秒前
浩浩完成签到 ,获得积分10
13秒前
zhoushaoyun2000完成签到,获得积分10
13秒前
lwk205完成签到,获得积分0
14秒前
lj完成签到 ,获得积分10
16秒前
年轻的白梦关注了科研通微信公众号
16秒前
靓丽的花卷完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助Sam十九采纳,获得10
19秒前
十七完成签到 ,获得积分10
20秒前
yt完成签到,获得积分10
21秒前
勤奋的凌翠完成签到 ,获得积分10
22秒前
馥日祎完成签到,获得积分10
24秒前
善良紫安完成签到 ,获得积分10
24秒前
记忆完成签到,获得积分10
26秒前
熊雅完成签到,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
中华宅女完成签到 ,获得积分10
27秒前
tangchao完成签到,获得积分10
27秒前
李健的小迷弟应助吱吱采纳,获得10
29秒前
瑾瑜玉完成签到 ,获得积分10
29秒前
chenyunxia完成签到,获得积分10
30秒前
大舟Austin完成签到 ,获得积分10
31秒前
粗暴的坤完成签到 ,获得积分10
32秒前
秦时明月完成签到,获得积分10
33秒前
小谭完成签到 ,获得积分10
33秒前
33秒前
shelemi发布了新的文献求助10
33秒前
结算发布了新的文献求助10
33秒前
篮孩子完成签到,获得积分10
36秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434871
求助须知:如何正确求助?哪些是违规求助? 3032199
关于积分的说明 8944583
捐赠科研通 2720149
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685877