Bilevel spatial–temporal aircraft taxiing optimization considering carbon emissions

环境科学 双层优化 计算机科学 温室气体 禁忌搜索 环境友好型 最优化问题 算法 生态学 生物 人工智能
作者
Yu Jiang,Yasha Wang,Mengmeng Liu,Qianqian Xue,Honghai Zhang,Hui Zhang
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:58: 103358-103358 被引量:3
标识
DOI:10.1016/j.seta.2023.103358
摘要

Air transportation pollution is mainly caused by aircraft carbon emissions. One of the key methods for reducing aircraft carbon emissions is to optimize the taxiing route on the airport surface. In view of this, a bilevel spatial–temporal taxiing optimization model considering carbon emissions is proposed in this paper. A bilevel programming method is deployed in the model to minimize the carbon emissions, taxiing waiting time, and conflicts of aircraft, which not only facilitates environmentally friendly airport establishment but also improve airport operation efficiency. Particularly, the influence of taxiing conflicts and turning action are considered when calculating the carbon emissions in the paper, which provides a more effective subjective for the model. An iterative neighborhood search algorithm is proposed to solve the model. The operation data of Baiyun Airport in China are utilized to validate the model. The results indicate that, compared with the first-come first-serve (FCFS), the proposed model reduces the total carbon emissions of aircraft by 814 kg on the premise of no taxiing conflict or 2% of the total. Compared with tabu search, it can reduce carbon emissions by 375 kg. This study can provide a more environmentally friendly taxiing strategy for aircraft and reduce carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐哈哈发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
Hawaii完成签到,获得积分10
2秒前
彩色的冥茗完成签到,获得积分10
4秒前
丰富的宛亦完成签到,获得积分10
4秒前
钟于发布了新的文献求助10
6秒前
科研通AI5应助可爱的梦松采纳,获得10
6秒前
cij123完成签到,获得积分10
7秒前
机灵烤鸡发布了新的文献求助10
7秒前
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
盈滢完成签到 ,获得积分10
11秒前
aimam完成签到,获得积分10
12秒前
传奇3应助奥利安费采纳,获得10
12秒前
斯文败类应助zuo采纳,获得10
14秒前
徐哈哈完成签到,获得积分10
15秒前
钟于完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966822
求助须知:如何正确求助?哪些是违规求助? 3512333
关于积分的说明 11162715
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432