Few-shot person re-identification based on Feature Set Augmentation and Metric Fusion

计算机科学 公制(单位) 人工智能 模式识别(心理学) 特征(语言学) 判别式 特征提取 相似性(几何) 鉴定(生物学) 欧几里德距离 余弦相似度 集合(抽象数据类型) 行人检测 计算机视觉 行人 图像(数学) 语言学 运营管理 哲学 植物 运输工程 工程类 经济 生物 程序设计语言
作者
Guizhen Chen,Guofeng Zou,Yue Liu,Xiaofei Zhang,Guixia Fu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106761-106761 被引量:1
标识
DOI:10.1016/j.engappai.2023.106761
摘要

Person re-identification identifies pedestrians by analyzing image information from surveillance videos. However, it faces challenges like occlusion, changing lighting, and costly annotation. Thus, it is often performed in a few-shot environment with limited images. In response to the problem of insufficient available pedestrian images in person re-identification, a few-shot person re-identification method based on feature set augmentation and metric fusion is proposed. In this work, firstly, a feature augmentation method is introduced into the feature embedding module. This method introduces multi-head self-attention in different feature extraction layers and spatial attention in feature fusion of different feature extraction layers, which can extract more diverse and discriminative pedestrian features. Secondly, a dual metric method combining Euclidean and cosine distance is proposed in the metric module to comprehensively measure the absolute spatial distance and directional difference of pedestrian features. In this way, the reliability of pedestrian similarity measurement is improved. Then, pedestrian feature similarity scores are obtained separately using the dual metric and relation metric methods. Finally, the combined metric score is obtained by weighted fusion, and the combined metric score is used to construct the joint loss to realize the overall optimization and training of the network. Experimental results on three small datasets, Market-mini, Duke-mini, and MSMT17-mini, show that the proposed method significantly improves recognition performance compared to other few-shot learning algorithms. Specifically, in scenarios 5-way 1-shot and 5-way 5-shot, the average recognition accuracies are 92.54% and 96.99%, 87.93% and 96.08%, and 71.68% and 84.51%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的忻完成签到,获得积分10
刚刚
cgh635673发布了新的文献求助10
刚刚
guoguo发布了新的文献求助10
1秒前
1秒前
1秒前
Si发布了新的文献求助10
2秒前
务实思烟完成签到,获得积分10
2秒前
Tracy完成签到,获得积分10
3秒前
朴素海亦完成签到 ,获得积分10
3秒前
大个应助白藜芦醇采纳,获得10
3秒前
三笠发布了新的文献求助10
4秒前
blueweier完成签到 ,获得积分0
4秒前
今后应助机智的青槐采纳,获得10
5秒前
王昱旻发布了新的文献求助10
5秒前
6秒前
郁金香发布了新的文献求助20
7秒前
8秒前
香蕉觅云应助魔幻大有采纳,获得10
8秒前
hahah发布了新的文献求助10
8秒前
荣幸完成签到,获得积分10
8秒前
白宝宝北北白应助yyi1采纳,获得20
9秒前
贤惠的人龙完成签到,获得积分10
9秒前
健忘书兰完成签到,获得积分10
9秒前
酷波er应助zzz采纳,获得10
9秒前
cranberry完成签到,获得积分10
9秒前
韦别完成签到,获得积分10
10秒前
10秒前
cgh635673完成签到,获得积分10
10秒前
祝小芸发布了新的文献求助10
11秒前
烤麸发布了新的文献求助80
11秒前
星辰大海应助guoguo采纳,获得10
12秒前
12秒前
wanci应助584178682采纳,获得10
12秒前
sutharsons应助韦别采纳,获得10
13秒前
务实思烟发布了新的文献求助10
14秒前
14秒前
Si完成签到,获得积分10
14秒前
个性笑白完成签到,获得积分10
15秒前
16秒前
科研通AI5应助健忘书兰采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552538
求助须知:如何正确求助?哪些是违规求助? 3128619
关于积分的说明 9378862
捐赠科研通 2827792
什么是DOI,文献DOI怎么找? 1554672
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714981