The Impact of Artificial Intelligence on Cardiovascular Disease Diagnosis: A Review

疾病 医学 人工智能 重症监护医学 深度学习 医疗保健 疾病管理 个性化医疗 人工智能应用 心血管健康 机器学习 计算机科学 病理 生物信息学 帕金森病 经济 生物 经济增长
作者
Ifra Chaudhary,Hassan Anwar
标识
DOI:10.53350/pjmhs0202317118
摘要

Background: Cardiovascular diseases present a significant global health challenge and remain the leading cause of death worldwide. However, traditional approaches to prevention, diagnosis, and treatment struggle to keep up with the increasing prevalence of these diseases. Aim: To enhance patient outcomes and optimize healthcare resource utilization. Artificial intelligence (AI), specifically machine learning and deep learning, has rapidly emerged as a promising tool with the potential to revolutionize various aspects of cardiovascular disease management, including detection, diagnosis, and treatment. Method: Reviewed the current literature surrounding AI techniques using PubMed, Science Direct, NCBI and Google Scholar, specifically exploring machine learning and deep learning, and their application in diagnosing heart disease. The focus was on AI's role in improving diagnostic techniques such as echocardiography, cardiac magnetic resonance imaging, computed tomography angiography, and electrocardiogram analysis. Results: AI has promising applications in various aspects of cardiovascular disease management. Its application in diagnostic techniques can help detect, diagnose, and treat heart disease, ultimately leading to more accurate and personalized treatments. Practical Implication: By integrating these advanced technologies into clinical practice, we can transform the diagnosis and management of heart diseases, leading to more accurate and personalized diagnostics and treatments. Conclusion: AI presents a significant potential in transforming the global health landscape by enhancing cardiovascular disease management. By leveraging these advanced technologies, clinicians can improve patient care and overall outcomes while addressing the increasing prevalence of these diseases. Keywords: Heart Diseases, Diagnosis, Deep Learning, Machine Learning, Public Health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
咎如天完成签到,获得积分20
2秒前
老盖发布了新的文献求助10
2秒前
3秒前
Z160完成签到,获得积分10
3秒前
gsx应助Van采纳,获得10
4秒前
Wy发布了新的文献求助10
4秒前
wasabi发布了新的文献求助10
5秒前
博修发布了新的文献求助10
6秒前
勤奋凡之完成签到 ,获得积分10
6秒前
玛琪玛小姐的狗完成签到,获得积分10
8秒前
8秒前
9秒前
王润完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
淡淡的冷之完成签到,获得积分10
12秒前
13秒前
现代小笼包完成签到,获得积分20
14秒前
把石头还给石头完成签到,获得积分10
14秒前
杳鸢发布了新的文献求助30
15秒前
15秒前
YJ888发布了新的文献求助10
16秒前
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得30
16秒前
赘婿应助科研通管家采纳,获得10
17秒前
核桃酥应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得30
17秒前
李健应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263875
求助须知:如何正确求助?哪些是违规求助? 2904164
关于积分的说明 8328454
捐赠科研通 2574250
什么是DOI,文献DOI怎么找? 1398989
科研通“疑难数据库(出版商)”最低求助积分说明 654403
邀请新用户注册赠送积分活动 632966