Faulty Diagnoses of PMSM in Flywheel Energy Storage Based on Phase Current Signal and Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 飞轮储能 储能 特征提取 转子(电动) 同步电动机 飞轮 人工神经网络 汽车工程 功率(物理) 人工智能 工程类 电气工程 机械工程 物理 量子力学 地震学 地质学
作者
Yinquan Yu,X. Zhu,Yong Hao
标识
DOI:10.1109/icpsasia58343.2023.10294859
摘要

Flywheel energy storage system, as a high-efficiency physical energy storage method, has superior performance in the field of regenerative braking for urban rail vehicles. As an energy conversion device with wide speed range, high efficiency and high power density, the permanent magnet synchronous motor (PMSM) is more suitable for application in flywheel energy storage system. However, a disadvantage of PMSM is that the permanent magnets on the motor rotor may generate demagnetization failure under severe operating conditions, which will further lead to other safety hazards. Therefore, the diagnosis of PMSM demagnetization faults is crucial for the safe operation of flywheel energy storage systems. Traditional fault diagnosis methods mainly rely on manual extraction of signal features and combine with machine learning for fault classification, while the drawback of this method is that it relies too much on expert knowledge and diagnostic experience. Therefore, an automatic diagnosis method based on deep learning is proposed in this paper. The method first converts the three-phase current data of PMSM into an image signal using a Gaussian mixture model (GMM) and trains a convolutional neural network (CNN) to achieve demagnetization fault detection. To verify the effectiveness of the proposed model, three PMSMs current data with different health conditions are used for training the model in this paper, and the trained model is also compared with a one-dimensional convolutional neural network (1D CNN). The experimental results show that the proposed method has better fault diagnosis accuracy than the 1D CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NiceSunnyDay发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
fd163c发布了新的文献求助20
2秒前
斯文起眸发布了新的文献求助10
2秒前
2秒前
狂野梦玉关注了科研通微信公众号
2秒前
隐形曼青应助小张求论文采纳,获得10
3秒前
3秒前
3秒前
xzd1014完成签到,获得积分10
3秒前
xuzj应助丽莉采纳,获得10
3秒前
SYLH应助爱吃饼干的土拨鼠采纳,获得10
5秒前
yyyyy完成签到,获得积分10
5秒前
5秒前
Crystal完成签到,获得积分10
6秒前
6秒前
LP完成签到,获得积分10
6秒前
tana98906完成签到,获得积分10
7秒前
sulfor发布了新的文献求助10
7秒前
所所应助LXL采纳,获得10
7秒前
所所应助niania采纳,获得10
7秒前
8秒前
abcd_1067发布了新的文献求助10
9秒前
11秒前
11秒前
m鹿m嘟啦完成签到 ,获得积分10
11秒前
12秒前
李朝阳完成签到,获得积分10
13秒前
13秒前
爆米花应助tyy采纳,获得10
13秒前
13秒前
小张求论文完成签到,获得积分10
14秒前
14秒前
桐桐应助烩面大师采纳,获得10
14秒前
14秒前
挽风发布了新的文献求助10
15秒前
15秒前
proton完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002