Faulty Diagnoses of PMSM in Flywheel Energy Storage Based on Phase Current Signal and Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 飞轮储能 储能 特征提取 转子(电动) 同步电动机 飞轮 人工神经网络 汽车工程 功率(物理) 人工智能 工程类 电气工程 机械工程 物理 量子力学 地震学 地质学
作者
Yinquan Yu,X. Zhu,Yong Hao
标识
DOI:10.1109/icpsasia58343.2023.10294859
摘要

Flywheel energy storage system, as a high-efficiency physical energy storage method, has superior performance in the field of regenerative braking for urban rail vehicles. As an energy conversion device with wide speed range, high efficiency and high power density, the permanent magnet synchronous motor (PMSM) is more suitable for application in flywheel energy storage system. However, a disadvantage of PMSM is that the permanent magnets on the motor rotor may generate demagnetization failure under severe operating conditions, which will further lead to other safety hazards. Therefore, the diagnosis of PMSM demagnetization faults is crucial for the safe operation of flywheel energy storage systems. Traditional fault diagnosis methods mainly rely on manual extraction of signal features and combine with machine learning for fault classification, while the drawback of this method is that it relies too much on expert knowledge and diagnostic experience. Therefore, an automatic diagnosis method based on deep learning is proposed in this paper. The method first converts the three-phase current data of PMSM into an image signal using a Gaussian mixture model (GMM) and trains a convolutional neural network (CNN) to achieve demagnetization fault detection. To verify the effectiveness of the proposed model, three PMSMs current data with different health conditions are used for training the model in this paper, and the trained model is also compared with a one-dimensional convolutional neural network (1D CNN). The experimental results show that the proposed method has better fault diagnosis accuracy than the 1D CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
野性的柠檬应助helppppp采纳,获得10
刚刚
刚刚
刚刚
坚强亦丝应助刚刚好采纳,获得10
1秒前
1秒前
希望天下0贩的0应助饭饭采纳,获得10
1秒前
研友_LOK59L发布了新的文献求助10
2秒前
orixero应助周雅彬采纳,获得10
2秒前
Ploaris发布了新的文献求助10
3秒前
脑洞疼应助ytong采纳,获得10
4秒前
韩soso发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
echo发布了新的文献求助10
5秒前
斯文冷亦完成签到 ,获得积分10
5秒前
yjj发布了新的文献求助10
6秒前
伊娃完成签到 ,获得积分10
6秒前
852应助can采纳,获得10
6秒前
8秒前
li_wei发布了新的文献求助10
8秒前
8秒前
8秒前
字符串完成签到,获得积分10
9秒前
wang发布了新的文献求助10
10秒前
菅露露完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
12秒前
wsw完成签到,获得积分20
12秒前
zhuyan完成签到,获得积分10
12秒前
研友_VZG7GZ应助愉快的土豆采纳,获得10
13秒前
YUE完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
周雅彬发布了新的文献求助10
16秒前
乐乐应助wang采纳,获得10
18秒前
李健应助背后的书文采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313270
求助须知:如何正确求助?哪些是违规求助? 2945680
关于积分的说明 8526586
捐赠科研通 2621440
什么是DOI,文献DOI怎么找? 1433542
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650568