清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Faulty Diagnoses of PMSM in Flywheel Energy Storage Based on Phase Current Signal and Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 飞轮储能 储能 特征提取 转子(电动) 同步电动机 飞轮 人工神经网络 汽车工程 功率(物理) 人工智能 工程类 电气工程 机械工程 物理 量子力学 地震学 地质学
作者
Yinquan Yu,X. Zhu,Yong Hao
标识
DOI:10.1109/icpsasia58343.2023.10294859
摘要

Flywheel energy storage system, as a high-efficiency physical energy storage method, has superior performance in the field of regenerative braking for urban rail vehicles. As an energy conversion device with wide speed range, high efficiency and high power density, the permanent magnet synchronous motor (PMSM) is more suitable for application in flywheel energy storage system. However, a disadvantage of PMSM is that the permanent magnets on the motor rotor may generate demagnetization failure under severe operating conditions, which will further lead to other safety hazards. Therefore, the diagnosis of PMSM demagnetization faults is crucial for the safe operation of flywheel energy storage systems. Traditional fault diagnosis methods mainly rely on manual extraction of signal features and combine with machine learning for fault classification, while the drawback of this method is that it relies too much on expert knowledge and diagnostic experience. Therefore, an automatic diagnosis method based on deep learning is proposed in this paper. The method first converts the three-phase current data of PMSM into an image signal using a Gaussian mixture model (GMM) and trains a convolutional neural network (CNN) to achieve demagnetization fault detection. To verify the effectiveness of the proposed model, three PMSMs current data with different health conditions are used for training the model in this paper, and the trained model is also compared with a one-dimensional convolutional neural network (1D CNN). The experimental results show that the proposed method has better fault diagnosis accuracy than the 1D CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
尤里有气发布了新的文献求助10
10秒前
小聪完成签到,获得积分10
55秒前
lovelife完成签到,获得积分10
1分钟前
1分钟前
wave8013完成签到,获得积分10
1分钟前
1分钟前
懒得起名字完成签到 ,获得积分10
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
狂野的含烟完成签到 ,获得积分10
2分钟前
2分钟前
RC发布了新的文献求助10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
2分钟前
常有李完成签到,获得积分10
2分钟前
2分钟前
尤里有气发布了新的文献求助10
2分钟前
George完成签到 ,获得积分10
2分钟前
LIJinlin发布了新的文献求助30
2分钟前
2分钟前
2分钟前
LIJinlin完成签到,获得积分10
2分钟前
科研通AI6应助RC采纳,获得10
3分钟前
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
moonlight完成签到,获得积分10
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
hanliulaixi完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Ashao完成签到 ,获得积分10
4分钟前
尤里有气发布了新的文献求助10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590577
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633541
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733