DSTCNet: Deep Spectro-Temporal-Channel Attention Network for Speech Emotion Recognition

计算机科学 情绪识别 语音识别 心理学 认知心理学
作者
Lili Guo,Shifei Ding,Longbiao Wang,Jianwu Dang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:4
标识
DOI:10.1109/tnnls.2023.3304516
摘要

Speech emotion recognition (SER) plays an important role in human-computer interaction, which can provide better interactivity to enhance user experiences. Existing approaches tend to directly apply deep learning networks to distinguish emotions. Among them, the convolutional neural network (CNN) is the most commonly used method to learn emotional representations from spectrograms. However, CNN does not explicitly model features' associations in the spectral-, temporal-, and channel-wise axes or their relative relevance, which will limit the representation learning. In this article, we propose a deep spectro-temporal-channel network (DSTCNet) to improve the representational ability for speech emotion. The proposed DSTCNet integrates several spectro-temporal-channel (STC) attention modules into a general CNN. Specifically, we propose the STC module that infers a 3-D attention map along the dimensions of time, frequency, and channel. The STC attention can focus more on the regions of crucial time frames, frequency ranges, and feature channels. Finally, experiments were conducted on the Berlin emotional database (EmoDB) and interactive emotional dyadic motion capture (IEMOCAP) databases. The results reveal that our DSTCNet can outperform the traditional CNN-based and several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjw发布了新的文献求助10
刚刚
刚刚
感谢标致念波转发科研通微信,获得积分50
1秒前
1秒前
1秒前
LYZSh完成签到,获得积分10
1秒前
任娜发布了新的文献求助10
6秒前
感谢小小西瓜萝卜青菜转发科研通微信,获得积分50
6秒前
Ting应助ELIAUK采纳,获得10
6秒前
Glufo发布了新的文献求助10
7秒前
酷波er应助Treyor采纳,获得10
8秒前
铁甲小宝完成签到,获得积分10
8秒前
hode完成签到,获得积分20
9秒前
xiexiaopa发布了新的文献求助10
11秒前
感谢方文山转发科研通微信,获得积分50
11秒前
任娜完成签到,获得积分10
14秒前
CarolineOY完成签到,获得积分10
15秒前
15秒前
CipherSage应助Eason采纳,获得10
15秒前
桐桐应助TingtingGZ采纳,获得10
18秒前
18秒前
感谢jiangcy转发科研通微信,获得积分50
18秒前
李健应助感动城采纳,获得10
20秒前
小呆呆发布了新的文献求助10
20秒前
20秒前
小于发布了新的文献求助10
21秒前
感谢insist转发科研通微信,获得积分50
23秒前
Treyor发布了新的文献求助10
23秒前
23秒前
莫离完成签到,获得积分10
24秒前
FashionBoy应助小猫宝采纳,获得10
25秒前
25秒前
xiexiaopa完成签到,获得积分20
26秒前
27秒前
biows119完成签到,获得积分0
27秒前
感谢流年转发科研通微信,获得积分50
28秒前
张张发布了新的文献求助10
28秒前
Never stall完成签到,获得积分10
29秒前
受伤觅风完成签到,获得积分10
30秒前
邓艳梅发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Divinatorische Texte II. Opferschau-Omina 520
Environmental DNA: For Biodiversity Research and Monitoring 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358223
求助须知:如何正确求助?哪些是违规求助? 2981331
关于积分的说明 8698813
捐赠科研通 2662971
什么是DOI,文献DOI怎么找? 1458204
科研通“疑难数据库(出版商)”最低求助积分说明 675080
邀请新用户注册赠送积分活动 666100