A machine learning-based method for identifying the meteorological field potentially inducing ozone pollution

污染 臭氧 环境科学 空气污染 样品(材料) 气象学 领域(数学) 湿度 风速 风向 大气科学 数学 地理 地质学 化学 生态学 有机化学 色谱法 纯数学 生物
作者
Jianwei Tang,Shuai Pan,Lei Li,Pak Wai Chan
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:312: 120047-120047
标识
DOI:10.1016/j.atmosenv.2023.120047
摘要

meteorological conditions are critical for ozone pollution. When numerical forecasts are provided for future meteorological fields, it is possible to determine whether they will cause ozone pollution, which is important for local administration to take precautions to reduce pollution. A new machine-learning-based identification method is proposed in this study to quickly identify meteorological fields associated with ozone pollution. This algorithm consists of five steps: (1) Using the Local Linear Embedding (LLE) method to reduce the dimension of the ERA5 historical data from 2015 to 2021 to obtain a historical sample library containing the characteristics of the pressure field (P), humidity field (R), u-component of wind and v-component of wind (U, V), temperature field (T), at the surface as well as 850 hPa; (2) after the new model-output data is generated, its features will be extracted by dimensionality reduction to form the sample to be identified; (3) by measuring the Euclidean distance between the sample to be identified and each sample in the historical sample library, several historical samples most similar to the sample to be identified can be determined; and (4) by checking the ozone concentration on the actual date corresponding to the most similar historical samples, we can determine whether the sample to be identified belongs to the meteorological field that is prone to cause ozone pollution; (5) calibrating the identification results by using a local meteorological index, which describe whether local surface meteorological conditions are prone to ozone pollution. The effectiveness of this method is tested using the ERA5 model data of 2022 with Guangzhou as the research object, and the identification accuracy of this method is 80.27%, and the missed alarm rate of 3.17%, which has certain application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助七七采纳,获得10
刚刚
炼丹完成签到,获得积分10
2秒前
锋锋完成签到,获得积分10
2秒前
4秒前
4秒前
6秒前
killCooker完成签到,获得积分10
7秒前
8秒前
Cathay发布了新的文献求助10
9秒前
13秒前
学无止境完成签到 ,获得积分10
13秒前
杜嘟嘟发布了新的文献求助10
13秒前
14秒前
冷酷鱼完成签到 ,获得积分10
14秒前
杨哈哈完成签到,获得积分10
15秒前
橘子完成签到,获得积分10
17秒前
18秒前
222完成签到,获得积分10
19秒前
ming123ah完成签到,获得积分10
19秒前
20秒前
大模型应助童话采纳,获得10
20秒前
21秒前
23秒前
王晓风发布了新的文献求助10
23秒前
飞鱼发布了新的文献求助10
24秒前
阿木木完成签到,获得积分10
24秒前
打打应助JK157采纳,获得10
26秒前
zed完成签到,获得积分10
27秒前
wjw发布了新的文献求助10
27秒前
maozhehai29999完成签到 ,获得积分20
27秒前
萧水白应助Wendy含采纳,获得10
28秒前
斯文败类应助dyfsj采纳,获得10
28秒前
可爱因子发布了新的文献求助10
29秒前
29秒前
陈大侠完成签到 ,获得积分10
30秒前
30秒前
32秒前
王晓风完成签到,获得积分10
33秒前
34秒前
嘎嘎嘎嘎发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760