亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 基因 化学
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zoye完成签到 ,获得积分10
4秒前
10秒前
mingble完成签到 ,获得积分10
44秒前
sam关闭了sam文献求助
47秒前
52秒前
Marciu33发布了新的文献求助10
55秒前
59秒前
黑球发布了新的文献求助10
1分钟前
科研王者完成签到,获得积分10
1分钟前
科研通AI2S应助科研王者采纳,获得10
1分钟前
1分钟前
CipherSage应助Marciu33采纳,获得10
2分钟前
sam完成签到,获得积分10
2分钟前
sam发布了新的文献求助30
2分钟前
2分钟前
Akim应助sam采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
可靠的寒风完成签到,获得积分10
2分钟前
Perry完成签到,获得积分10
3分钟前
4分钟前
传奇3应助ffffan采纳,获得10
4分钟前
小强完成签到 ,获得积分10
4分钟前
liqiqi完成签到,获得积分20
4分钟前
4分钟前
liqiqi发布了新的文献求助30
4分钟前
4分钟前
4分钟前
Marciu33发布了新的文献求助10
4分钟前
Marciu33完成签到,获得积分10
5分钟前
我是老大应助lele200218采纳,获得10
5分钟前
5分钟前
5分钟前
lele200218完成签到,获得积分10
5分钟前
lele200218发布了新的文献求助10
5分钟前
5分钟前
彭于晏应助燕鹏采纳,获得10
5分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335303
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614004
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447358
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974