已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00完成签到 ,获得积分10
刚刚
4秒前
吴丽雪发布了新的文献求助10
7秒前
嘻哈小天才完成签到 ,获得积分10
11秒前
蛋黄啵啵完成签到 ,获得积分10
14秒前
demon王完成签到,获得积分10
16秒前
18秒前
蓝瘦香菇发布了新的文献求助10
19秒前
万能图书馆应助也有采纳,获得10
19秒前
不上课不行完成签到,获得积分10
20秒前
默默襄完成签到 ,获得积分10
22秒前
23秒前
服了您完成签到 ,获得积分10
24秒前
silsotiscolor完成签到,获得积分10
25秒前
cfy完成签到,获得积分10
26秒前
科研通AI5应助蓝瘦香菇采纳,获得10
28秒前
zydd发布了新的文献求助10
28秒前
唐泽雪穗应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
qwwhu应助科研通管家采纳,获得10
28秒前
唐泽雪穗应助科研通管家采纳,获得10
28秒前
29秒前
傻芙芙的完成签到,获得积分10
29秒前
30秒前
双眼皮跳蚤完成签到,获得积分0
33秒前
neuron2021发布了新的文献求助10
35秒前
科研通AI6应助无题采纳,获得10
37秒前
BYGYHQ完成签到 ,获得积分10
37秒前
wsb76完成签到 ,获得积分10
37秒前
40秒前
右暖完成签到,获得积分10
41秒前
英姑应助jeep先生采纳,获得10
44秒前
polite完成签到 ,获得积分10
45秒前
tough_cookie完成签到 ,获得积分10
48秒前
越瑟淳潔完成签到 ,获得积分10
50秒前
祝yu完成签到 ,获得积分10
58秒前
iwaking完成签到,获得积分10
1分钟前
小苏完成签到,获得积分10
1分钟前
十七完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197833
求助须知:如何正确求助?哪些是违规求助? 4379025
关于积分的说明 13637476
捐赠科研通 4234845
什么是DOI,文献DOI怎么找? 2323025
邀请新用户注册赠送积分活动 1321090
关于科研通互助平台的介绍 1271903