X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xu_W卜完成签到,获得积分10
刚刚
1秒前
Ray发布了新的文献求助10
2秒前
zyyyyyyyy完成签到 ,获得积分10
3秒前
3秒前
GOD伟完成签到,获得积分0
4秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
4秒前
怕孤独的问芙完成签到 ,获得积分10
5秒前
王艺霖发布了新的文献求助10
6秒前
bo完成签到,获得积分10
7秒前
8秒前
风清扬发布了新的文献求助10
10秒前
Freddy完成签到 ,获得积分10
12秒前
12秒前
稳重岩完成签到 ,获得积分10
15秒前
幸运咖发布了新的文献求助30
16秒前
16秒前
写个锤子完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
熙梓日记完成签到,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
Leeu完成签到,获得积分10
29秒前
lii完成签到,获得积分10
29秒前
夜色下啖一口茶完成签到,获得积分10
29秒前
张伊婷完成签到 ,获得积分10
30秒前
HPP123完成签到 ,获得积分10
30秒前
zy完成签到 ,获得积分10
32秒前
nmm1111发布了新的文献求助10
33秒前
xgx984完成签到,获得积分10
36秒前
旦皋完成签到 ,获得积分10
37秒前
39秒前
鱼羊鲜完成签到,获得积分10
42秒前
qingsi完成签到 ,获得积分10
43秒前
鱼羊鲜发布了新的文献求助10
44秒前
licheng完成签到,获得积分10
46秒前
49秒前
顾矜应助书祝采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418652
求助须知:如何正确求助?哪些是违规求助? 4534317
关于积分的说明 14143457
捐赠科研通 4450523
什么是DOI,文献DOI怎么找? 2441286
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438