X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 基因 化学
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1111完成签到,获得积分20
1秒前
爆米花应助笑点低蜜蜂采纳,获得10
1秒前
橘子味汽水完成签到 ,获得积分10
1秒前
Victor陈完成签到,获得积分10
1秒前
1秒前
seed85完成签到,获得积分10
1秒前
最初完成签到,获得积分20
2秒前
Hello应助Chem is try采纳,获得10
2秒前
hhh发布了新的文献求助10
2秒前
2秒前
3秒前
落寞白曼完成签到,获得积分10
4秒前
4秒前
海鸥海鸥发布了新的文献求助10
5秒前
别让我误会完成签到 ,获得积分10
6秒前
6秒前
KK发布了新的文献求助30
6秒前
娃娃完成签到 ,获得积分20
6秒前
科研通AI5应助结实的冰真采纳,获得30
6秒前
冷静的小熊猫完成签到,获得积分10
7秒前
Donnie完成签到,获得积分10
7秒前
若尘完成签到,获得积分10
8秒前
椰子完成签到 ,获得积分10
8秒前
8秒前
细腻涵菱完成签到,获得积分10
9秒前
吕耀炜完成签到,获得积分10
9秒前
9秒前
9秒前
简称王完成签到 ,获得积分10
9秒前
蓝莓松饼完成签到,获得积分10
10秒前
一路高飛完成签到,获得积分10
10秒前
赘婿应助andyxrz采纳,获得10
10秒前
Zhang完成签到,获得积分10
10秒前
11秒前
年轻冥茗完成签到,获得积分10
11秒前
apple发布了新的文献求助10
12秒前
CarterXD完成签到,获得积分10
12秒前
紧张的友灵完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672