X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方师关注了科研通微信公众号
刚刚
刚刚
清清发布了新的文献求助10
刚刚
Lucas应助wise111采纳,获得10
1秒前
秦风关注了科研通微信公众号
1秒前
西蘑菇完成签到,获得积分10
1秒前
小蘑菇应助雪雪啊采纳,获得10
1秒前
hhh发布了新的文献求助10
1秒前
rr发布了新的文献求助10
2秒前
认真乐双发布了新的文献求助10
2秒前
3秒前
3秒前
忧伤的盼秋完成签到,获得积分10
4秒前
4秒前
YeMa发布了新的文献求助10
4秒前
4秒前
5秒前
123完成签到 ,获得积分10
5秒前
LOVE0077完成签到,获得积分10
5秒前
英姑应助cannice采纳,获得10
6秒前
充电宝应助zhs采纳,获得10
6秒前
王博龙完成签到 ,获得积分10
6秒前
6秒前
之贻发布了新的文献求助10
7秒前
www完成签到,获得积分20
7秒前
HJQ发布了新的文献求助10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
研友_Z6k5Q8发布了新的文献求助10
9秒前
9秒前
www发布了新的文献求助10
10秒前
10秒前
hanyangyang完成签到,获得积分10
10秒前
吃定彩虹关注了科研通微信公众号
10秒前
科目三应助乐乐采纳,获得10
11秒前
coco234完成签到,获得积分10
12秒前
NineLiar完成签到,获得积分10
12秒前
ZS发布了新的文献求助10
12秒前
Zorion发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769