X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金子完成签到,获得积分10
刚刚
QDDYR完成签到,获得积分10
刚刚
raibow9814完成签到,获得积分10
2秒前
言非离完成签到 ,获得积分10
3秒前
花开四海完成签到 ,获得积分10
5秒前
帅气的宽完成签到 ,获得积分10
6秒前
可靠的书本完成签到,获得积分10
6秒前
浮游应助小心翼翼采纳,获得30
7秒前
称心芷天完成签到 ,获得积分20
8秒前
复杂真完成签到,获得积分10
9秒前
不回首完成签到 ,获得积分10
9秒前
wisher完成签到 ,获得积分10
10秒前
向来缘浅关注了科研通微信公众号
10秒前
量子星尘发布了新的文献求助10
11秒前
巫马寒梅完成签到,获得积分10
13秒前
dididi完成签到 ,获得积分10
14秒前
十五完成签到,获得积分10
14秒前
黄油可颂完成签到 ,获得积分10
15秒前
爱学习的小钟完成签到 ,获得积分10
16秒前
木子完成签到,获得积分10
16秒前
swordshine完成签到,获得积分0
18秒前
qin完成签到,获得积分10
19秒前
20秒前
隔水一路秋完成签到,获得积分10
20秒前
totoro完成签到,获得积分10
21秒前
Jieh完成签到,获得积分10
21秒前
懒惰扼杀激情完成签到 ,获得积分10
22秒前
吴天春完成签到,获得积分10
22秒前
枫糖叶落完成签到,获得积分10
23秒前
Bakkkyeom完成签到,获得积分10
23秒前
可可完成签到,获得积分10
24秒前
xzy998发布了新的文献求助200
25秒前
燕子完成签到,获得积分10
25秒前
菠萝蜜完成签到,获得积分10
28秒前
芝诺的乌龟完成签到 ,获得积分0
28秒前
pengyang完成签到 ,获得积分10
28秒前
LIUJIE完成签到,获得积分10
29秒前
29秒前
30秒前
511完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430