X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ws完成签到,获得积分10
刚刚
小璐璐呀发布了新的文献求助10
刚刚
左右完成签到,获得积分10
1秒前
1秒前
ticsadis完成签到,获得积分10
1秒前
1秒前
远方完成签到,获得积分10
1秒前
神明发布了新的文献求助10
1秒前
2秒前
2秒前
西门博超发布了新的文献求助10
2秒前
吴海娇完成签到,获得积分10
3秒前
迷人小张完成签到,获得积分20
3秒前
yan发布了新的文献求助10
3秒前
科研通AI5应助JV采纳,获得10
3秒前
等待帆布鞋完成签到 ,获得积分10
4秒前
果果发布了新的文献求助30
4秒前
4秒前
葡小小发布了新的文献求助10
5秒前
ding应助pincoudegushi采纳,获得10
5秒前
刘成完成签到,获得积分10
5秒前
6秒前
6秒前
马吉克完成签到 ,获得积分10
6秒前
复成发布了新的文献求助10
6秒前
zzww发布了新的文献求助10
6秒前
6秒前
7秒前
哭泣的海莲完成签到,获得积分10
7秒前
yj1506837246发布了新的文献求助10
7秒前
浮游应助彭于晏采纳,获得10
8秒前
筋筋子发布了新的文献求助10
8秒前
廿叁发布了新的文献求助20
8秒前
英姑应助asder采纳,获得10
9秒前
隐形曼青应助文艺冰露采纳,获得10
9秒前
10秒前
爱吃脆脆鲨完成签到 ,获得积分10
10秒前
gao发布了新的文献求助10
11秒前
TTT发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705