已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄周发布了新的文献求助10
刚刚
刚刚
1秒前
TN给TN的求助进行了留言
1秒前
3秒前
LYZSh发布了新的文献求助10
4秒前
思源应助辛勤汲采纳,获得10
4秒前
超级盼烟发布了新的文献求助10
6秒前
莫名乐乐完成签到,获得积分10
6秒前
wackykao完成签到 ,获得积分10
7秒前
8秒前
QAQ完成签到 ,获得积分10
8秒前
9秒前
10秒前
隋嫣然完成签到,获得积分10
12秒前
单亚楠发布了新的文献求助10
13秒前
木头鱼发布了新的文献求助10
13秒前
14秒前
星星完成签到 ,获得积分10
15秒前
超级盼烟完成签到,获得积分10
16秒前
18秒前
大个应助月蚀六花采纳,获得10
19秒前
20秒前
24秒前
27秒前
科研通AI6应助唐宇欣采纳,获得40
27秒前
欣雪完成签到 ,获得积分10
29秒前
Zhangtao发布了新的文献求助30
29秒前
赘婿应助单亚楠采纳,获得10
31秒前
111发布了新的文献求助10
32秒前
32秒前
33秒前
海贼学术完成签到 ,获得积分10
34秒前
真龙狂婿完成签到,获得积分10
35秒前
Akim应助ylh采纳,获得10
35秒前
追风少年发布了新的文献求助10
35秒前
edmund完成签到 ,获得积分10
36秒前
三花发布了新的文献求助10
36秒前
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159682
求助须知:如何正确求助?哪些是违规求助? 4354052
关于积分的说明 13557681
捐赠科研通 4197970
什么是DOI,文献DOI怎么找? 2302354
邀请新用户注册赠送积分活动 1302400
关于科研通互助平台的介绍 1247603