已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 相互信息 稳健性(进化) 模态(人机交互) 模式识别(心理学) 多光谱图像 无监督学习 学习迁移 图像分辨率 生物化学 化学 基因
作者
Jiaxin Li,Ke Zheng,Zhi Li,Lianru Gao,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:5
标识
DOI:10.1109/tgrs.2023.3300043
摘要

Hyperspectral image super-resolution can compensate for the incompleteness of single-sensor imaging and provide desirable products with both high spatial and spectral resolution. Among them, unmixing-inspired networks have drawn considerable attention owing to their straightforward unsupervised paradigm. However, most do not fully capture and utilize the multi-modal information due to their limited representation ability of constructed networks, hence leaving large room for further improvement. To this end, we propose an X-shaped interactive autoencoders network with cross-modality mutual learning between hyperspectral and multispectral data, XINet for short, to cope with this problem. Generally, it employs a coupled structure equipped with two autoencoders, aiming at deriving latent abundances and corresponding endmembers from input correspondence. Inside the network, a novel X-shaped interactive architecture is designed by coupling two disjointed U-Nets together via a parameter-shared strategy, which not only enables sufficient information flow between two modalities but also leads to informative spatial-spectral features. Considering the complementarity across each modality, a cross-modality mutual learning module is constructed to further transfer knowledge from one modality to another, allowing for better utilization of multi-modal features. Moreover, a joint self-supervised loss is proposed to effectively optimize our proposed XINet, enabling an unsupervised manner without external triplets supervision. Extensive experiments, including super-resolved results in four datasets, robustness analysis, and extension to other applications, are conducted, and the superiority of our method is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白瓜完成签到 ,获得积分10
5秒前
AMENG完成签到,获得积分10
9秒前
Ldq完成签到 ,获得积分10
10秒前
姚琛完成签到 ,获得积分10
18秒前
平淡灭绝完成签到 ,获得积分10
21秒前
XFaning发布了新的文献求助10
21秒前
Foxjker完成签到 ,获得积分10
22秒前
迷路的八宝粥完成签到,获得积分10
25秒前
虞美人发布了新的文献求助10
25秒前
28秒前
Micheal完成签到 ,获得积分10
29秒前
yueeoor完成签到 ,获得积分10
33秒前
35秒前
38秒前
利好完成签到 ,获得积分10
38秒前
G1997完成签到 ,获得积分10
40秒前
CodeCraft应助友好听云采纳,获得10
41秒前
hh发布了新的文献求助10
42秒前
休眠补正完成签到,获得积分10
43秒前
44秒前
46秒前
46秒前
50秒前
慕青应助hh采纳,获得10
53秒前
要你命3000发布了新的文献求助10
56秒前
万能图书馆应助Newky采纳,获得10
1分钟前
1分钟前
科研通AI5应助虞美人采纳,获得10
1分钟前
zorro3574完成签到,获得积分10
1分钟前
参宿七发布了新的文献求助10
1分钟前
守一完成签到,获得积分10
1分钟前
科研通AI5应助重要的夏烟采纳,获得10
1分钟前
参宿七完成签到,获得积分10
1分钟前
单身的老太完成签到,获得积分10
1分钟前
顾矜应助study666采纳,获得10
1分钟前
WW完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629