Data- driven and knowledge- guided prediction model of milling tool life grade

人工神经网络 计算机科学 卷积神经网络 人工智能 预测建模 机器学习 数据挖掘
作者
Fuqiang Zhang,Fengli Xu,Xueliang Zhou,Kai Ding,Shujun Shao,Chao‐Hai Du,Jiewu Leng
出处
期刊:International Journal of Computer Integrated Manufacturing [Informa]
卷期号:37 (6): 669-684 被引量:11
标识
DOI:10.1080/0951192x.2023.2257620
摘要

ABSTRACTModels that predict tool life based on wear mechanism knowledge are typically inaccurate, as the use of simplified model parameters can have a significant effect on this prediction. While a tool life prediction model based on sample cutting data is limited to specific working conditions, which makes tool life prediction difficult to generalize, and needs a large amount of historical data as support. In this paper, the empirical formula of tool life based on wear mechanism knowledge was combined with a neural network, which can significantly improve prediction accuracy. Firstly, a concept of tool life grade is proposed, and its classification standard is outlined. Secondly, a prediction model based on the empirical life formula and experimental data was established. Thirdly, a tool wear prediction model based on a convolutional neural network (CNN) was established through the real-time tool condition data, and the corresponding life compensation strategy can be determined by comparing this with the historical data. Finally, the empirical life grade was adjusted to obtain the real-time tool life grade. A case example shows that the data-driven knowledge-guided prediction model can significantly improve the recognition accuracy of tool life grade.KEYWORDS: Milling tool life gradewear mechanism knowledgecondition dataconvolutional neural networkreal time prediction AcknowledgementsThis work was supported in part by the National Key R&D Program of China (2021YFB3301702), Major Special Science and Technology Project of Shaanxi Province, China (No.2018zdzx01-01-01), and the Natural Science Foundation of Shaanxi Province, China (No. 2021JM-173).Disclosure statementNo potential conflict of interest was reported by the authors.Contribution StatementFuqiang Zhang provided the research idea; Fengli Xu wrote the paper and developed a software testing system; Xueliang Zhou and Jiew Leng conducted review and editing; Kai Ding provided the funding acquisition; Shujun Shao and Chao Du provided the data set.Additional informationFundingThe work was supported by the National Key R&D Program of China [2021YFB3301702]; Natural Science Foundation of Shaanxi Province, China [2021JM-173]; Major Special Science and Technology Project of Shaanxi Province, China [2018zdzx01-01-01].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzf1996发布了新的文献求助10
1秒前
顺利毕业完成签到,获得积分10
1秒前
深情安青应助Wang采纳,获得10
1秒前
星辰大海应助朱佳玉采纳,获得10
1秒前
2秒前
Witty完成签到,获得积分10
2秒前
2秒前
在水一方应助Abi采纳,获得10
3秒前
猴王发布了新的文献求助30
4秒前
水知寒完成签到,获得积分10
4秒前
4秒前
4秒前
七七八八完成签到,获得积分10
5秒前
6秒前
香蕉觅云应助独特的凝荷采纳,获得10
7秒前
7秒前
斯文败类应助小林同学采纳,获得30
8秒前
柔之发布了新的文献求助10
9秒前
糖糖发布了新的文献求助10
11秒前
碗碗发布了新的文献求助10
11秒前
12秒前
xzy998应助哭泣的映寒采纳,获得10
15秒前
17秒前
17秒前
iNk应助李大白采纳,获得20
17秒前
18秒前
有生之年完成签到,获得积分10
20秒前
朱佳玉发布了新的文献求助10
20秒前
HUCAI完成签到,获得积分10
20秒前
Moon丶33完成签到,获得积分10
22秒前
anydwason完成签到,获得积分10
24秒前
25秒前
25秒前
邹修坤发布了新的文献求助10
27秒前
哑剧完成签到,获得积分10
27秒前
27秒前
在水一方应助浅沫juanjuan采纳,获得10
28秒前
www发布了新的文献求助10
30秒前
Wang发布了新的文献求助10
30秒前
丘比特应助lincsh采纳,获得10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226