强化学习
交叉口(航空)
计算机科学
路径(计算)
钢筋
无人机
运动规划
人工智能
运输工程
工程类
机器人
海洋工程
结构工程
程序设计语言
作者
Chen Xue-mei,Shuyuan Xu,Zijia Wang,Xuelong Zheng,Xin-Tong Han,En-Hao Liu
出处
期刊:Unmanned Systems
[World Scientific]
日期:2022-12-07
卷期号:12 (04): 641-652
标识
DOI:10.1142/s2301385024500122
摘要
By aiming at addressing the left-turning problem of an autonomous vehicle considering the oncoming vehicles at an urban unsignallized intersection, a hierarchical reinforcement learning is proposed and a two-layer model is established to study behaviors of left-turning driving. Compared with the conventional decision-making models with a fixed path, the proposed multi-paths decision-making algorithm with horizontal and vertical strategies can improve the efficiency of autonomous vehicles crossing intersections while ensuring safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI