Nonlinear decision-making with enzymatic neural networks

神经形态工程学 人工神经网络 计算机科学 DNA运算 非线性系统 计算 杠杆(统计) 人工智能 理论计算机科学 算法 物理 量子力学
作者
Shu Okumura,Guillaume Gines,Nicolas Lobato‐Dauzier,Alexandre Baccouche,Robin Deteix,Teruo Fujii,Yannick Rondelez,Anthony J. Genot
出处
期刊:Nature [Nature Portfolio]
卷期号:610 (7932): 496-501 被引量:76
标识
DOI:10.1038/s41586-022-05218-7
摘要

Artificial neural networks have revolutionized electronic computing. Similarly, molecular networks with neuromorphic architectures may enable molecular decision-making on a level comparable to gene regulatory networks1,2. Non-enzymatic networks could in principle support neuromorphic architectures, and seminal proofs-of-principle have been reported3,4. However, leakages (that is, the unwanted release of species), as well as issues with sensitivity, speed, preparation and the lack of strong nonlinear responses, make the composition of layers delicate, and molecular classifications equivalent to a multilayer neural network remain elusive (for example, the partitioning of a concentration space into regions that cannot be linearly separated). Here we introduce DNA-encoded enzymatic neurons with tuneable weights and biases, and which are assembled in multilayer architectures to classify nonlinearly separable regions. We first leverage the sharp decision margin of a neuron to compute various majority functions on 10 bits. We then compose neurons into a two-layer network and synthetize a parametric family of rectangular functions on a microRNA input. Finally, we connect neural and logical computations into a hybrid circuit that recursively partitions a concentration plane according to a decision tree in cell-sized droplets. This computational power and extreme miniaturization open avenues to query and manage molecular systems with complex contents, such as liquid biopsies or DNA databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrLee完成签到,获得积分10
1秒前
4秒前
7秒前
7秒前
来了完成签到,获得积分10
9秒前
粱忆寒发布了新的文献求助10
11秒前
12秒前
麻雀发布了新的文献求助30
12秒前
12秒前
大脑袋应助感动的念双采纳,获得30
14秒前
www完成签到 ,获得积分10
16秒前
隐形从梦完成签到 ,获得积分20
17秒前
CodeCraft应助Jero采纳,获得10
17秒前
18秒前
Zzzzzzz完成签到,获得积分10
18秒前
博修发布了新的文献求助10
19秒前
kingking完成签到,获得积分10
19秒前
21秒前
十二完成签到 ,获得积分10
22秒前
23秒前
QYF发布了新的文献求助10
23秒前
上官若男应助123采纳,获得10
24秒前
24秒前
脑洞疼应助吗喽采纳,获得10
25秒前
小蘑菇应助ANG采纳,获得10
25秒前
李健应助灯灯采纳,获得10
26秒前
CodeCraft应助大力云朵采纳,获得10
26秒前
CXS发布了新的文献求助10
27秒前
wxhzsdvv发布了新的文献求助10
28秒前
田様应助wen采纳,获得10
28秒前
肉肉发布了新的文献求助30
29秒前
29秒前
爆米花应助科研通管家采纳,获得10
30秒前
Liufgui应助科研通管家采纳,获得10
30秒前
30秒前
Owen应助科研通管家采纳,获得10
30秒前
wu8577应助科研通管家采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382