Effect of grain size gradient on the mechanical behavior of gradient nanograined pure iron: an atomic study

材料科学 粒度 冶金 凝聚态物理 物理
作者
Hao Yang,Binjun Wang,L. Duan,Yiyang Chen,Chun Hua Xu,Li Yu
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
标识
DOI:10.1088/1361-651x/ad90f8
摘要

Abstract Using molecular dynamics (MD) simulation, the deformation mechanisms of gradient nanograined (GNG) pure iron (Fe) were investigated. Simulations of uniaxial tensile experiments were conducted on samples exhibiting different grain size gradients (GSGs). The simulation results reveal the presence of a critical GNG parameter (g), at which point the GNG-Fe attains its highest strength. The deformation mechanisms of three representative samples, namely GNG-2 with the g value at the threshold, GNG-1 with a g value smaller than the critical threshold and GNG-4 with a g value exceeding it, were thoroughly investigated. Within the coarse-grained (CG) region of GNG-1, the primary deformation mechanism is predominantly characterized by planar defects, rather than being dominated by dislocations. The mechanisms of both “strain hardening” and “softening” were observed and discussed in this region. The deformation of the coarse grains occurs in a coordinated manner, and the magnitude of the back-stress is insufficient to trigger grain boundary (GB) motion in the fine-grained (FG) region. In contrast, the deformation of the CG region in the GNG-4 primarily depends on dislocation. The “hardening” and “softening” effects of the dislocations were discussed. In the FG region of GNG-4, the grains undergo deformation primarily through GB motion, a phenomenon attributed to the significant back-stress generated by the uncoordinated deformation exhibited by the coarse grains. In the CG area of sample 2 with the g value at threshold, both dislocation- and planar defects-controlled mechanisms are observed. In the FG of this sample, neither GB migration and grain rotation are found. Only the GB width becomes larger, indicating that the back-stress transferred from the CG area makes the GB more active, but not large enough to induce the GB migration or grain rotation. The results of this work may provide some theoretical supports for the deformation mechanism of the GNG materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Einsree发布了新的文献求助10
1秒前
研友_8opMyL完成签到,获得积分10
1秒前
可爱的函函应助ashley采纳,获得10
3秒前
YFL发布了新的文献求助10
3秒前
思源应助zhixian采纳,获得10
3秒前
MchemG应助白开水采纳,获得20
3秒前
SciGPT应助sylus采纳,获得10
4秒前
hanqianqian发布了新的文献求助10
4秒前
所所应助小琪采纳,获得10
4秒前
yyanxuemin919发布了新的文献求助10
5秒前
Tom47完成签到,获得积分10
6秒前
timick完成签到,获得积分10
8秒前
11秒前
12秒前
hanqianqian完成签到,获得积分10
12秒前
Jasper应助泷生采纳,获得10
14秒前
111发布了新的文献求助10
15秒前
爆米花应助Liu采纳,获得10
17秒前
17秒前
Youdge完成签到 ,获得积分10
18秒前
嘿嘿发布了新的文献求助10
18秒前
认真初之发布了新的文献求助10
19秒前
领导范儿应助111采纳,获得10
20秒前
22秒前
23秒前
24秒前
科研通AI2S应助无尘采纳,获得10
26秒前
搜集达人应助无尘采纳,获得10
26秒前
Deadman完成签到,获得积分10
26秒前
嘿嘿发布了新的文献求助10
28秒前
壮观问寒发布了新的文献求助10
29秒前
好运加满完成签到 ,获得积分10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
29秒前
只争朝夕应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432