Learning in Repeated Multiunit Pay-as-Bid Auctions

独特竞价拍卖 共同价值拍卖 投标底纹 代理投标书 微观经济学 计算机科学 业务 英国拍卖 经济 拍卖理论
作者
Rigel Galgana,Negin Golrezaei
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2023.0403
摘要

Problem definition: Motivated by carbon emissions trading schemes (ETSs), Treasury auctions, procurement auctions, and wholesale electricity markets, which all involve the auctioning of homogeneous multiple units, we consider the problem of learning how to bid in repeated multiunit pay-as-bid (PAB) auctions. In each of these auctions, a large number of (identical) items are to be allocated to the largest submitted bids, where the price of each of the winning bids is equal to the bid itself. In this work, we study the problem of optimizing bidding strategies from the perspective of a single bidder. Methodology/results: Effective bidding in PAB auctions is complex due to the combinatorial nature of the action space. We show that a utility decoupling trick enables a polynomial time algorithm to solve the offline problem where competing bids are known in advance. Leveraging this structure, we design efficient algorithms for the online problem under both full information and bandit feedback settings that achieve an upper bound on regret of [Formula: see text] and [Formula: see text], respectively, where M is the number of units demanded by the bidder, and T is the total number of auctions. We accompany these results with a regret lower bound of [Formula: see text] for the full information setting and [Formula: see text] for the bandit setting. We also present additional findings on the characterization of PAB equilibria. Managerial implications: Although the Nash equilibria of PAB auctions possess nice properties such as winning bid uniformity and high welfare and revenue, they are not guaranteed under no-regret learning dynamics. Nevertheless, our simulations suggest that these properties hold anyways, regardless of Nash equilibrium existence. Compared with its uniform price counterpart, the PAB dynamics converge faster and achieve higher revenue, making PAB appealing whenever revenue holds significant social value—for example, ETSs and Treasury auctions. Funding: R. Galgana and N. Golrezaei were supported in part by the Young Investigator Program Award from the Office of Naval Research [Grant N00014-21-1-2776] and the Massachusetts Institute of Technology Research Support Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0403 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱学习完成签到 ,获得积分10
刚刚
111完成签到,获得积分10
刚刚
可乐要加冰完成签到,获得积分10
刚刚
深情安青应助郑开司09采纳,获得10
1秒前
娜行发布了新的文献求助10
1秒前
Auoroa完成签到,获得积分10
1秒前
明智之举完成签到,获得积分10
2秒前
赵赵完成签到,获得积分10
2秒前
共享精神应助lalala采纳,获得10
2秒前
Hello应助hf采纳,获得10
2秒前
2秒前
豆丁完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
鹿友菌完成签到,获得积分10
5秒前
皮克斯完成签到 ,获得积分10
5秒前
黑米粥发布了新的文献求助10
5秒前
iu完成签到,获得积分10
5秒前
脑洞疼应助KX采纳,获得10
5秒前
大模型应助艺玲采纳,获得10
6秒前
ZXD完成签到,获得积分10
6秒前
6秒前
丞诺完成签到,获得积分10
6秒前
Ricardo完成签到,获得积分10
7秒前
深情安青应助孔雀翎采纳,获得10
7秒前
8秒前
8秒前
端庄的萝完成签到,获得积分10
8秒前
平淡南霜完成签到,获得积分10
8秒前
李健的粉丝团团长应助ppbb采纳,获得10
8秒前
Mr_Hao发布了新的文献求助20
9秒前
fff发布了新的文献求助10
9秒前
9秒前
CC发布了新的文献求助10
10秒前
eee发布了新的文献求助20
10秒前
HEIKU应助xinxinqi采纳,获得10
11秒前
keroro完成签到,获得积分10
11秒前
研友_VZG7GZ应助宋嬴一采纳,获得10
11秒前
祯果粒完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672