Learning in Repeated Multiunit Pay-as-Bid Auctions

独特竞价拍卖 共同价值拍卖 投标底纹 代理投标书 微观经济学 计算机科学 业务 英国拍卖 经济 拍卖理论
作者
Rigel Galgana,Negin Golrezaei
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2023.0403
摘要

Problem definition: Motivated by carbon emissions trading schemes (ETSs), Treasury auctions, procurement auctions, and wholesale electricity markets, which all involve the auctioning of homogeneous multiple units, we consider the problem of learning how to bid in repeated multiunit pay-as-bid (PAB) auctions. In each of these auctions, a large number of (identical) items are to be allocated to the largest submitted bids, where the price of each of the winning bids is equal to the bid itself. In this work, we study the problem of optimizing bidding strategies from the perspective of a single bidder. Methodology/results: Effective bidding in PAB auctions is complex due to the combinatorial nature of the action space. We show that a utility decoupling trick enables a polynomial time algorithm to solve the offline problem where competing bids are known in advance. Leveraging this structure, we design efficient algorithms for the online problem under both full information and bandit feedback settings that achieve an upper bound on regret of [Formula: see text] and [Formula: see text], respectively, where M is the number of units demanded by the bidder, and T is the total number of auctions. We accompany these results with a regret lower bound of [Formula: see text] for the full information setting and [Formula: see text] for the bandit setting. We also present additional findings on the characterization of PAB equilibria. Managerial implications: Although the Nash equilibria of PAB auctions possess nice properties such as winning bid uniformity and high welfare and revenue, they are not guaranteed under no-regret learning dynamics. Nevertheless, our simulations suggest that these properties hold anyways, regardless of Nash equilibrium existence. Compared with its uniform price counterpart, the PAB dynamics converge faster and achieve higher revenue, making PAB appealing whenever revenue holds significant social value—for example, ETSs and Treasury auctions. Funding: R. Galgana and N. Golrezaei were supported in part by the Young Investigator Program Award from the Office of Naval Research [Grant N00014-21-1-2776] and the Massachusetts Institute of Technology Research Support Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0403 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助阳光下的微风采纳,获得30
2秒前
2秒前
cong发布了新的文献求助10
3秒前
abai完成签到,获得积分10
3秒前
彳亍而上学完成签到,获得积分10
3秒前
许子健发布了新的文献求助10
4秒前
Xander发布了新的文献求助10
4秒前
所所应助山山而川采纳,获得10
4秒前
忐忑的烤鸡完成签到,获得积分10
6秒前
6秒前
喵2发布了新的文献求助10
7秒前
Russell完成签到,获得积分10
7秒前
有梦不觉人生寒完成签到 ,获得积分10
8秒前
9秒前
自觉忆山完成签到,获得积分10
10秒前
sht应助DQY采纳,获得10
10秒前
糊糊完成签到 ,获得积分10
10秒前
善学以致用应助chufan采纳,获得10
12秒前
13秒前
14秒前
ssk发布了新的文献求助10
15秒前
大个应助Lee采纳,获得20
16秒前
喵2完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
科研混子表锅完成签到,获得积分10
18秒前
鲤鱼奇异果完成签到,获得积分10
19秒前
在水一方应助sht采纳,获得10
20秒前
liaomr发布了新的文献求助10
21秒前
22秒前
22秒前
山山而川发布了新的文献求助10
22秒前
大模型应助周先森采纳,获得10
22秒前
linmo发布了新的文献求助10
22秒前
木通完成签到,获得积分10
24秒前
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388