Learning in Repeated Multiunit Pay-as-Bid Auctions

独特竞价拍卖 共同价值拍卖 投标底纹 代理投标书 微观经济学 计算机科学 业务 英国拍卖 经济 拍卖理论
作者
Rigel Galgana,Negin Golrezaei
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/msom.2023.0403
摘要

Problem definition: Motivated by carbon emissions trading schemes (ETSs), Treasury auctions, procurement auctions, and wholesale electricity markets, which all involve the auctioning of homogeneous multiple units, we consider the problem of learning how to bid in repeated multiunit pay-as-bid (PAB) auctions. In each of these auctions, a large number of (identical) items are to be allocated to the largest submitted bids, where the price of each of the winning bids is equal to the bid itself. In this work, we study the problem of optimizing bidding strategies from the perspective of a single bidder. Methodology/results: Effective bidding in PAB auctions is complex due to the combinatorial nature of the action space. We show that a utility decoupling trick enables a polynomial time algorithm to solve the offline problem where competing bids are known in advance. Leveraging this structure, we design efficient algorithms for the online problem under both full information and bandit feedback settings that achieve an upper bound on regret of [Formula: see text] and [Formula: see text], respectively, where M is the number of units demanded by the bidder, and T is the total number of auctions. We accompany these results with a regret lower bound of [Formula: see text] for the full information setting and [Formula: see text] for the bandit setting. We also present additional findings on the characterization of PAB equilibria. Managerial implications: Although the Nash equilibria of PAB auctions possess nice properties such as winning bid uniformity and high welfare and revenue, they are not guaranteed under no-regret learning dynamics. Nevertheless, our simulations suggest that these properties hold anyways, regardless of Nash equilibrium existence. Compared with its uniform price counterpart, the PAB dynamics converge faster and achieve higher revenue, making PAB appealing whenever revenue holds significant social value—for example, ETSs and Treasury auctions. Funding: R. Galgana and N. Golrezaei were supported in part by the Young Investigator Program Award from the Office of Naval Research [Grant N00014-21-1-2776] and the Massachusetts Institute of Technology Research Support Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0403 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱学有机完成签到,获得积分10
1秒前
袁寒烟发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
欧阳文淇关注了科研通微信公众号
5秒前
5秒前
Hello应助科研通管家采纳,获得10
6秒前
华仔应助小宇采纳,获得10
6秒前
事不过三应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
xiaolei001应助科研通管家采纳,获得30
7秒前
李健应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
多多完成签到,获得积分10
7秒前
7秒前
Owen应助yl采纳,获得10
9秒前
10秒前
summer完成签到,获得积分10
10秒前
shimily完成签到,获得积分10
10秒前
HJJHJH完成签到,获得积分20
11秒前
汉堡包应助后青春期的痘采纳,获得10
12秒前
12秒前
斯文败类应助飞云采纳,获得10
13秒前
14秒前
14秒前
xrl完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助梦比优斯采纳,获得30
15秒前
15秒前
故然完成签到,获得积分10
16秒前
格物致知发布了新的文献求助10
17秒前
欣欣发布了新的文献求助10
20秒前
小宇发布了新的文献求助10
20秒前
Yxs发布了新的文献求助10
20秒前
调皮钱钱发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244