催化作用
电子转移
选择性
钴
酞菁
法拉第效率
化学
材料科学
色散(光学)
氧化还原
纳米技术
组合化学
光化学
无机化学
电极
电化学
有机化学
物理化学
物理
光学
作者
Yinger Xin,Charles B. Musgrave,Jianjun Su,Jiangtong Li,Pei Xiong,Molly Meng‐Jung Li,Yun Mi Song,Qianfeng Gu,Qiang Zhang,Yong Liu,Weihua Guo,Le Cheng,Xuefeng Tan,Jiang Qiu,Chuan Xia,Ben Zhong Tang,William A. Goddard,Ruquan Ye
标识
DOI:10.1002/anie.202420286
摘要
Strain engineering has emerged as a powerful approach in steering the material properties. However, the improved catalytic activity remains poorly understood. Here we report that subtle changes in molecular configurations can profoundly affect, conducively or adversely, the catalytic selectivity and product turnover frequencies (TOFs) of CO2RR. Specifically, introducing molecular curvature in cobalt tetraaminophthalocyanine improves the multielectron CO2RR activity by favorable *CO hydrogenation, attaining methanol Faradaic efficiency up to 52%. In stark contrast, strained iron phthalocyanine exacerbates *CO poisoning, leading to a decreased TOFCO by over 50% at ‐0.5 VRHE and a rapid current decay. The uniform dispersion is crucial for optimizing electron transfer, while activity is distinctly sensitive to local atomic environment around the active sites. Specifically, local strain either enhances binding to intermediates or poisons the catalytic sites. Our comprehensive analysis elucidates the intricate relationship between molecular structure and CO2RR activities, offering insights into designing efficient heterogeneous molecular interfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI