Fault-Tolerant Closed-Loop Controller Using Online Fault Detection by Neural Networks

故障检测与隔离 人工神经网络 断层(地质) 控制理论(社会学) 计算机科学 控制器(灌溉) 陷入故障 卡尔曼滤波器 容错 人工智能 控制工程 工程类 实时计算 控制(管理) 分布式计算 地震学 农学 执行机构 生物 地质学
作者
Alma Y. Alanís,Jesús Gerardo Cruz Álvarez,Oscar D. Sánchez,Herminio Hernández,Arturo Valdivia-G
出处
期刊:Machines [MDPI AG]
卷期号:12 (12): 844-844
标识
DOI:10.3390/machines12120844
摘要

This paper presents an online model-free sensor fault-tolerant control scheme capable of tolerating the most common faults affecting an induction motor. This approach involves using neural networks for fault detection to provide the controller with sufficient information to counteract adverse consequences due to sensor faults, such as degradation in performance, reliability, and even failures in the control system. The proposed approach does not consider the knowledge of the nominal model of the system or when the fault may occur. Therefore, a high-order recurrent neural network trained online by the Extended Kalman Filter is used to obtain a mathematical model of the system. The obtained model is used to synthesize a discrete-time sliding mode control. Then, the fault-detection and -isolation stage is performed by independent neural networks, which have as input the signal from the current sensor and the position sensor, respectively. In this way, the neural classifiers continuously monitor the sensors, showing the ability to know the sensor status. The combination of controller and fault detection maintains the operation of the motor during the time of the fault occurrence, whether due to sensor disconnection, degradation, or connection failure. In fact, the MLP neural network achieves an accuracy between 95% and 99% and shows an AUC of 97% to 99%, and this neural network correctly classifies true positives with acceptable performance. The Recall value is high, between 97% and 99%, and the F1 score confirms a good performance. In contrast, the CNN shows a higher accuracy, between 96% and 99% in accuracy and 98% to 99% in AUC. In addition, its Recall and F1 reflect a better balance and capacity to handle complex data, demonstrating its superiority to MLP in fault classification. Therefore, neural networks are a promising approach in areas such as fault-tolerant control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杳鸢应助喜悦采纳,获得10
1秒前
小蘑菇应助文艺的紫萍采纳,获得10
1秒前
2秒前
彭于晏应助hanchangcun采纳,获得10
2秒前
打打应助云泪采纳,获得10
2秒前
伊雪儿完成签到,获得积分10
2秒前
今后应助一只桶采纳,获得10
3秒前
阿水发布了新的文献求助10
3秒前
4秒前
4秒前
陈颜完成签到,获得积分10
4秒前
大海的DOI发布了新的文献求助10
4秒前
汉堡包应助南风平采纳,获得10
4秒前
4秒前
4秒前
wxy完成签到,获得积分10
4秒前
hyw完成签到,获得积分10
4秒前
5秒前
灵巧的坤发布了新的文献求助10
5秒前
李健的粉丝团团长应助mix采纳,获得10
5秒前
虾仁不眨眼完成签到,获得积分10
5秒前
X子千发布了新的文献求助10
5秒前
36456657应助街道办事部采纳,获得10
6秒前
科研通AI5应助zzw54188采纳,获得30
6秒前
summer发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
田様应助多来米采纳,获得10
7秒前
SciGPT应助小白采纳,获得10
7秒前
joe发布了新的文献求助10
8秒前
打打应助wxy采纳,获得10
8秒前
xziyou完成签到,获得积分10
8秒前
9秒前
林薯条发布了新的文献求助10
9秒前
ruby发布了新的文献求助10
9秒前
10秒前
只想摆烂完成签到 ,获得积分10
10秒前
威武的沂完成签到,获得积分10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474762
求助须知:如何正确求助?哪些是违规求助? 3066860
关于积分的说明 9101503
捐赠科研通 2758260
什么是DOI,文献DOI怎么找? 1513498
邀请新用户注册赠送积分活动 699576
科研通“疑难数据库(出版商)”最低求助积分说明 699031