Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering

脚手架 丝素 材料科学 丝绸 生物医学工程 组织工程 再生(生物学) 软骨 复合材料 解剖 细胞生物学 医学 生物
作者
T. Braxton,Khoon S. Lim,Cesar R. Alcala‐Orozco,Habib Joukhdar,Jelena Rnjak‐Kovacina,Neelam Iqbal,Tim B. F. Woodfield,David J. Wood,Claire Brockett,Xuebin Yang
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
标识
DOI:10.1021/acsbiomaterials.4c01865
摘要

Osteochondral tissue damage is a serious concern, with even minor cartilage damage dramatically increasing an individual's risk of osteoarthritis. Therefore, there is a need for an early intervention for osteochondral tissue regeneration. 3D printing is an exciting method for developing novel scaffolds, especially for creating biological scaffolds for osteochondral tissue engineering. However, many 3D printing techniques rely on creating a lattice structure, which often demonstrates poor cell bridging between filaments due to its large pore size, reducing regenerative speed and capacity. To tackle this issue, a novel biphasic scaffold was developed by a combination of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene-terephthalate) (PEGT/PBT) lattice infilled with a porous silk scaffold (derived from Bombyx mori silk fibroin) to make up a bone phase, which continued to a seamless silk top layer, representing a cartilage phase. Compression testing showed scaffolds had Young's modulus, ultimate compressive strength, and fatigue resistance that would allow for their theoretical survival during implantation and joint articulation without stress-shielding mechanosensitive cells. Fluorescent microscopy showed biphasic scaffolds could support the attachment and spreading of human mesenchymal stem cells from bone marrow (hMSC-BM). These promising results highlight the potential utilization of this novel scaffold for osteochondral tissue regeneration as well as highlighting the potential of infilling silk materials within 3D printed scaffolds to further increase their versatility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
Ao应助科研通管家采纳,获得20
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
wys2493发布了新的文献求助10
1秒前
honting完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
伶俐从筠应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ding应助连冷安采纳,获得10
2秒前
Zero完成签到,获得积分10
3秒前
3秒前
lignin发布了新的文献求助10
3秒前
4秒前
dio小面包完成签到,获得积分10
5秒前
慕青应助冬瓜鑫采纳,获得10
6秒前
乌兰巴托没有海完成签到,获得积分10
6秒前
暴躁的马里奥完成签到,获得积分10
6秒前
懒虫儿坤发布了新的文献求助10
6秒前
7秒前
brave完成签到 ,获得积分10
7秒前
李爱国应助charm12采纳,获得10
8秒前
奋斗盼旋完成签到,获得积分20
8秒前
8秒前
善良飞丹完成签到,获得积分10
8秒前
科研通AI2S应助大雄采纳,获得10
9秒前
斯文败类应助小邱采纳,获得30
9秒前
雪白冰之发布了新的文献求助10
10秒前
afra发布了新的文献求助10
10秒前
科目三应助lignin采纳,获得10
11秒前
Triptolide发布了新的文献求助10
11秒前
11秒前
2522525发布了新的文献求助10
12秒前
fiu~完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053