Making Early and Accurate Deep Learning Predictions to Help Disadvantaged Individuals in Medical Crowdfunding

弱势群体 营销 计算机科学 业务 医学教育 互联网隐私 经济 医学 经济增长
作者
Tong Wang,Fujie Jin,Yu Jeffrey Hu,Lu Feng,Yuan Cheng
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241231846
摘要

Medical crowdfunding is a popular channel for people seeking financial assistance to cover their medical expenses, allowing them to collect donations from a large number of donors. However, a mismatch between the supply and demand of donations creates large heterogeneity in the fundraising outcomes across medical crowdfunding campaigns, and such uncertainty can impede the timely planning of treatment for patients. Providing early and accurate forecasts for medical crowdfunding performance can better inform fundraisers and assist them in optimizing timely interventions to improve fundraising outcomes. In this study, we propose a new approach that effectively combines time-varying features and time-invariant features in a deep learning model, to provide dynamic predictions of fundraising outcomes. When compared with a comprehensive set of baseline models, our model consistently demonstrates higher predictive accuracy while requiring a shorter observation window of data, thus achieving both accurate and early prediction objectives. We further conduct a temporal clustering analysis to analyze the heterogeneous patterns in how the time-varying features relate to fundraising outcomes. In addition, we perform simulation analyses to demonstrate that interventions from fundraisers can significantly improve the fundraising performance of disadvantaged cases that are predicted to receive the lowest donation amounts, particularly when the interventions are implemented early. These findings show that our deep learning prediction model and the actionable insights can provide timely feedback to fundraisers and promote equal access to resources for all. Our proposed approach is applicable to various contexts, enabling effective processing of diverse sources of data and facilitating early interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助哇哒西蛙采纳,获得10
刚刚
3秒前
羲月发布了新的文献求助10
5秒前
红莲墨生发布了新的文献求助10
6秒前
CHENDQ完成签到,获得积分10
8秒前
黑香菱发布了新的文献求助10
10秒前
1t发布了新的文献求助30
10秒前
仚屳完成签到,获得积分10
16秒前
sad完成签到,获得积分20
16秒前
传奇3应助乐一采纳,获得10
17秒前
NN完成签到,获得积分10
17秒前
大聪明发布了新的文献求助10
18秒前
阿大撒2发布了新的文献求助10
18秒前
一直会飞的猪完成签到 ,获得积分10
23秒前
23秒前
黑香菱完成签到,获得积分10
24秒前
1t完成签到,获得积分10
26秒前
gnr2000完成签到,获得积分0
26秒前
李一来完成签到,获得积分10
28秒前
李一来发布了新的文献求助10
31秒前
lilili完成签到,获得积分10
34秒前
Young完成签到 ,获得积分10
37秒前
38秒前
39秒前
对手发布了新的文献求助10
40秒前
所所应助哈哈哈哈哈采纳,获得10
41秒前
42秒前
星之茧发布了新的文献求助10
45秒前
45秒前
香蕉觅云应助顾墨采纳,获得10
46秒前
47秒前
张小星发布了新的文献求助10
47秒前
HeTaoLuu完成签到,获得积分20
50秒前
大聪明完成签到,获得积分10
50秒前
50秒前
kuzb完成签到,获得积分10
51秒前
51秒前
张小星完成签到,获得积分10
52秒前
ninomae完成签到 ,获得积分10
52秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059100
求助须知:如何正确求助?哪些是违规求助? 2715072
关于积分的说明 7443633
捐赠科研通 2360574
什么是DOI,文献DOI怎么找? 1250828
科研通“疑难数据库(出版商)”最低求助积分说明 607550
版权声明 596432