亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Making Early and Accurate Deep Learning Predictions to Help Disadvantaged Individuals in Medical Crowdfunding

心理干预 弱势群体 捐赠 基线(sea) 营销 计算机科学 业务 经济 心理学 经济增长 政治学 精神科 法学
作者
Tong Wang,Fujie Jin,Yu Jeffrey Hu,Lu Feng,Yuan Cheng
出处
期刊:Production and Operations Management [Wiley]
被引量:1
标识
DOI:10.1177/10591478241231846
摘要

Medical crowdfunding is a popular channel for people seeking financial assistance to cover their medical expenses, allowing them to collect donations from a large number of donors. However, a mismatch between the supply and demand of donations creates large heterogeneity in the fundraising outcomes across medical crowdfunding campaigns, and such uncertainty can impede the timely planning of treatment for patients. Providing early and accurate forecasts for medical crowdfunding performance can better inform fundraisers and assist them in optimizing timely interventions to improve fundraising outcomes. In this study, we propose a new approach that effectively combines time-varying features and time-invariant features in a deep learning model, to provide dynamic predictions of fundraising outcomes. When compared with a comprehensive set of baseline models, our model consistently demonstrates higher predictive accuracy while requiring a shorter observation window of data, thus achieving both accurate and early prediction objectives. We further conduct a temporal clustering analysis to analyze the heterogeneous patterns in how the time-varying features relate to fundraising outcomes. In addition, we perform simulation analyses to demonstrate that interventions from fundraisers can significantly improve the fundraising performance of disadvantaged cases that are predicted to receive the lowest donation amounts, particularly when the interventions are implemented early. These findings show that our deep learning prediction model and the actionable insights can provide timely feedback to fundraisers and promote equal access to resources for all. Our proposed approach is applicable to various contexts, enabling effective processing of diverse sources of data and facilitating early interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
4秒前
coolkid应助julien采纳,获得10
4秒前
6秒前
江氏巨颏虎完成签到,获得积分10
6秒前
岸在海的深处完成签到 ,获得积分10
18秒前
123完成签到 ,获得积分10
19秒前
归尘发布了新的文献求助10
19秒前
zhang发布了新的文献求助10
21秒前
研友_VZG7GZ应助外向不愁采纳,获得10
33秒前
追三完成签到 ,获得积分10
35秒前
35秒前
Liu889888发布了新的文献求助30
40秒前
Swilder完成签到 ,获得积分10
41秒前
50秒前
微笑驳完成签到 ,获得积分10
52秒前
外向不愁发布了新的文献求助10
54秒前
芒果完成签到 ,获得积分10
54秒前
57秒前
深情安青应助科研通管家采纳,获得10
57秒前
学术小垃圾完成签到,获得积分10
1分钟前
1分钟前
小小旭呀完成签到,获得积分10
1分钟前
1分钟前
迷路以蓝完成签到,获得积分10
1分钟前
sysm发布了新的文献求助10
1分钟前
1分钟前
子凡完成签到 ,获得积分10
1分钟前
sysm完成签到,获得积分10
1分钟前
tttt完成签到 ,获得积分10
1分钟前
Bowman完成签到,获得积分10
1分钟前
岳莹晓完成签到 ,获得积分10
1分钟前
1分钟前
丸子完成签到 ,获得积分10
2分钟前
yangzai完成签到 ,获得积分10
2分钟前
袁粪到了完成签到 ,获得积分10
2分钟前
岁和景明完成签到 ,获得积分10
2分钟前
王饱饱完成签到 ,获得积分10
2分钟前
HHHH发布了新的文献求助10
2分钟前
斯寜完成签到,获得积分0
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144954
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622