清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Discrete residual diffusion model for high-resolution prostate MRI synthesis

残余物 计算机科学 人工智能 算法 编码器 生成模型 计算机视觉 模式识别(心理学) 生成语法 操作系统
作者
Zhitao Han,Wenhui Huang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad229e
摘要

Abstract Objective. High-resolution magnetic resonance imaging (HR MRI) is an effective tool for diagnosing PCa, but it requires patients to remain immobile for extended periods, increasing chances of image distortion due to motion. One solution is to utilize super-resolution (SR) techniques to process low-resolution (LR) images and create a higher-resolution version. However, existing medical SR models suffer from issues such as excessive smoothness and mode collapse. In this paper, we propose a novel generative model avoiding the problems of existing models, called Discrete Residual Diffusion Model (DR-DM). 
 Approach. First, the forward process of DR-DM gradually disrupts the input via a fixed Markov chain, producing a sequence of latent variables with increasing noise. The backward process learns the conditional transit distribution and gradually match the target data distribution. By optimizing a variant of the variational lower bound, training diffusion models effectively address the issue of mode collapse. Second, to focus DR-DM on recovering high-frequency details, we synthesize residual images instead of synthesizing HR MRI directly. The residual image represents the difference between the HR and LR up-sampled MR image, and we convert residual image into discrete image tokens with a shorter sequence length by a vector quantized variational autoencoder (VQ-VAE), which reduced the computational complexity. Third, transformer architecture is integrated to model the relationship between LR MRI and residual image, which can capture the long-range dependencies between LR MRI and the synthesized imaging and improve the fidelity of reconstructed images.
 Main results. Extensive experimental validations have been performed on two popular yet challenging magnetic resonance image super-resolution tasks and compared to five state-of-the-art methods. 
 Significance. Our experiments on the Prostate-Diagnosis and PROSTATEx datasets demonstrate that the DR-DM model significantly improves the signal-to-noise ratio of MRI for prostate cancer, resulting in greater clarity and improved diagnostic accuracy for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlwang完成签到,获得积分10
7秒前
上下完成签到 ,获得积分10
9秒前
9秒前
风秋杨完成签到 ,获得积分10
12秒前
Arthur完成签到 ,获得积分10
13秒前
深情安青应助毕书白采纳,获得10
17秒前
juan完成签到 ,获得积分10
20秒前
管靖易完成签到 ,获得积分10
23秒前
华仔应助毕书白采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
毕书白发布了新的文献求助10
1分钟前
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
彭于晏应助小袁搜题采纳,获得10
2分钟前
2分钟前
毕书白发布了新的文献求助10
2分钟前
缥缈的幻雪完成签到 ,获得积分10
2分钟前
ste56发布了新的文献求助10
3分钟前
小西完成签到 ,获得积分10
3分钟前
3分钟前
阿航发布了新的文献求助10
3分钟前
阿鑫发布了新的文献求助10
3分钟前
白嫖论文完成签到 ,获得积分10
4分钟前
maggiexjl完成签到,获得积分10
4分钟前
和谐的夏岚完成签到 ,获得积分10
5分钟前
creep2020完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
Cole完成签到,获得积分10
5分钟前
CodeCraft应助Cole采纳,获得10
5分钟前
姚芭蕉完成签到 ,获得积分0
5分钟前
5分钟前
Cole发布了新的文献求助10
6分钟前
小哈完成签到 ,获得积分10
6分钟前
英勇无春发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
牛牛牛刘完成签到 ,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500090
科研通“疑难数据库(出版商)”最低求助积分说明 693334
邀请新用户注册赠送积分活动 691477