A Blockchain-Based Scheme for Secure Data Offloading in Healthcare With Deep Reinforcement Learning

计算机科学 强化学习 块链 马尔可夫决策过程 分布式计算 计算机安全 信息隐私 计算机网络 人工智能 马尔可夫过程 数学 统计
作者
Qiang He,Zheng Feng,Hui Fang,Xingwei Wang,Liang Zhao,Yu‐Dong Yao,Keping Yu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 65-80 被引量:32
标识
DOI:10.1109/tnet.2023.3274631
摘要

With the widespread popularity of the Internet of Things and various intelligent medical devices, the amount of medical data is rising sharply, and thus medical data processing has become increasingly challenging. Mobile edge computing technology allows computing power to be allocated at the edge closer to users, which enables efficient data offloading for healthcare systems. However, existing studies on medical data offloading seldom guarantee effective data privacy and security. Moreover, the research equipping data offloading architectures with Blockchain neglect the delay and energy consumption costs incurred in using Blockchain technology for medical data offloading. Therefore, in this paper, we propose a data offloading scheme for healthcare based on Blockchain technology, which achieves optimal medical resource allocation and simultaneously minimizes the cost of offloading tasks. Specifically, we design a smart contract to ensure secure data offloading. And, we formulate the cost problem as a Markov Decision Process, solved by a policy search-based deep reinforcement learning (Asynchronous Advantage Actor-Critic) scheme, where we jointly consider offloading decisions, allocation of computing resources and radio transmission bandwidth, and Blockchain data security audits. The security of our smart-contract-based mechanism is theoretically and empirically proved, while extensive experimental results also show that our solution can obtain superior performance gains with lower cost than other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhuzhu完成签到,获得积分10
1秒前
zjq发布了新的文献求助10
1秒前
发发扶完成签到,获得积分10
4秒前
Orange应助sutychen采纳,获得10
4秒前
淡淡菠萝发布了新的文献求助10
4秒前
科研不掉头发完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
9秒前
不知道发布了新的文献求助10
9秒前
9秒前
Yukwah完成签到,获得积分10
10秒前
学习发布了新的文献求助10
10秒前
kk发布了新的文献求助10
10秒前
清爽的纸鹤完成签到,获得积分10
10秒前
周周完成签到 ,获得积分10
10秒前
12秒前
李辉发布了新的文献求助10
13秒前
16秒前
wanci应助悦耳巧曼采纳,获得10
17秒前
浅尝离白应助一昂杨采纳,获得10
17秒前
七八九完成签到 ,获得积分10
17秒前
19秒前
yunnguw完成签到,获得积分20
19秒前
天天快乐应助一念之间采纳,获得10
20秒前
梨米特发布了新的文献求助10
20秒前
ccerr完成签到,获得积分10
21秒前
xjcy应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
毛豆爸爸应助科研通管家采纳,获得40
22秒前
无花果应助科研通管家采纳,获得10
22秒前
毛豆爸爸应助科研通管家采纳,获得40
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得30
22秒前
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
烟花应助机智的傲柏采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194