作者
Peeyush Phogat,Shreya Shreya,Ranjana Jha,Sukhvir Singh
摘要
Abstract Zinc oxide (ZnO) is a remarkably versatile material, with diverse tailored morphologies for a variety of applications. This chapter delves into the exploration of various ZnO morphologies, including nanoflowers, nanorods, nanospheres, nanocubes, nanotubes, nanowires, quantum dots, hollow spheres, and core–shell structures, along with their respective practical applications. Nanoflowers, distinguished by intricate petal-like structures, excel as catalysts in chemical reactions, advancing catalysis and fine chemical synthesis. ZnO nanorods, characterized by their high aspect ratio, enhance energy conversion in solar cells, increasing light absorption and facilitating electron transport. ZnO nanospheres, spherical nanoparticles with extensive surface area, play a pivotal role in photocatalysis, purifying wastewater and air by decomposing organic pollutants. ZnO quantum dots, with size-dependent quantum confinement effects, underpin progress in optoelectronics, enhancing solar cells, LEDs, and sensors with tunable bandgaps and exceptional optical properties. Hollow ZnO spheres, with their unique void-centered structure, find use in controlled drug delivery, enabling targeted release with minimal side effects. They also serve as versatile templates for synthesizing various nanomaterials. core–shell structures, where ZnO cores are encapsulated by other materials, provide sensitivity and protection in sensors and drug delivery systems, tailored to environmental sensing or precise control over drug release rates and durations. The versatility of ZnO, embodied through its various morphologies, spans diverse applications, from catalysis and photovoltaics to environmental remediation, drug delivery, and personal care products. This chapter provides a comprehensively study of distinct ZnO morphologies and new possibilities of those structures across scientific and industrial realms, leaving an enduring impact on modern technology and improving everyday life.