Diagnostic Accuracy of Ultra-Low Dose CT Compared to Standard Dose CT for Identification of Fresh Rib Fractures by Deep Learning Algorithm

鉴定(生物学) 算法 核医学 计算机断层摄影术 计算机科学 医学 人工智能 放射科 生物 植物
作者
Peikai Huang,Hongyi Li,Fenghuan Lin,Ming Lei,Meng Zhang,Jingfeng Liu,JunChen,Junfei Hou,Mengqiang Xiao
标识
DOI:10.1007/s10278-024-01027-8
摘要

The present study aimed to evaluate the diagnostic accuracy of ultra-low dose computed tomography (ULD-CT) compared to standard dose computed tomography (SD-CT) in discerning recent rib fractures using a deep learning algorithm detection of rib fractures (DLADRF). A total of 158 patients undergoing forensic diagnosis for rib fractures were included in this study: 50 underwent SD-CT, and 108 were assessed using ULD-CT. Junior and senior radiologists independently evaluated the images to identify and characterize the rib fractures. The sensitivity of rib fracture diagnosis by radiologists and radiologist + DLADRF was better using SD-CT than ULD-CT. However, the diagnosis sensitivity of DLADRF using ULD-CT alone was slightly more than SD-CT. Nonetheless, no substantial differences were observed in specificity, positive predictive value, and negative predictive value between SD-CT and ULD-CT by the same radiologist, radiologist + DLADRF, and DLADRF (P > 0.05). The area under the curve (AUC) of receiver operating characteristic indicated that senior radiologist + DLADRF was significantly better than senior and junior radiologists, junior radiologists + DLADRF, and DLADRF alone using SD-CT or ULD-CT (all P < 0.05). Also, junior radiologists + DLADRF was better with ULD-CT than senior and junior radiologists (P < 0.05). The AUC of the rib fracture diagnosed by senior radiologists did not differ from DLADRF using ULD-CT. Also, no significant differences were observed between junior + AI and senior and between junior and DLADRF using SD-CT. DLADRF enhanced the diagnostic performance of radiologists in detecting recent rib fractures. The diagnostic outcomes between SD-CT and ULD-CT across radiologists' experience and DLADRF did not differ significantly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
嗨嗨嗨应助研友_Y59785采纳,获得100
4秒前
5秒前
han发布了新的文献求助10
5秒前
目鱼发布了新的文献求助10
6秒前
猫咪老师应助马俣辰采纳,获得20
8秒前
huangsongsong完成签到,获得积分10
10秒前
12秒前
13秒前
15秒前
yff发布了新的文献求助10
15秒前
zjs发布了新的文献求助10
17秒前
华仔应助Galaxee采纳,获得10
18秒前
小秋发布了新的文献求助10
19秒前
思源应助陶醉觅夏采纳,获得10
19秒前
20秒前
20秒前
20秒前
21秒前
李剑鸿发布了新的文献求助540
22秒前
Azure完成签到,获得积分10
22秒前
余菓关注了科研通微信公众号
24秒前
25秒前
25秒前
25秒前
寒崽完成签到 ,获得积分10
25秒前
28秒前
28秒前
fbpuf发布了新的文献求助10
29秒前
31秒前
sagacity发布了新的文献求助10
31秒前
kyokukou发布了新的文献求助10
31秒前
Dora完成签到 ,获得积分10
31秒前
33秒前
随便选发布了新的文献求助10
33秒前
酷炫的八宝粥完成签到,获得积分10
33秒前
周周发布了新的文献求助10
34秒前
Jasper应助xanderxue采纳,获得10
34秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3110714
求助须知:如何正确求助?哪些是违规求助? 2760951
关于积分的说明 7663297
捐赠科研通 2415916
什么是DOI,文献DOI怎么找? 1282142
科研通“疑难数据库(出版商)”最低求助积分说明 618920
版权声明 599478