PND-Net: plant nutrition deficiency and disease classification using graph convolutional network

计算机科学 网(多面体) 图形 疾病 人工智能 医学 理论计算机科学 病理 数学 几何学
作者
Asish Bera,Debotosh Bhattacharjee,Ondřej Krejcar
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:7
标识
DOI:10.1038/s41598-024-66543-7
摘要

Crop yield production could be enhanced for agricultural growth if various plant nutrition deficiencies, and diseases are identified and detected at early stages. Hence, continuous health monitoring of plant is very crucial for handling plant stress. The deep learning methods have proven its superior performances in the automated detection of plant diseases and nutrition deficiencies from visual symptoms in leaves. This article proposes a new deep learning method for plant nutrition deficiencies and disease classification using a graph convolutional network (GNN), added upon a base convolutional neural network (CNN). Sometimes, a global feature descriptor might fail to capture the vital region of a diseased leaf, which causes inaccurate classification of disease. To address this issue, regional feature learning is crucial for a holistic feature aggregation. In this work, region-based feature summarization at multi-scales is explored using spatial pyramidal pooling for discriminative feature representation. Furthermore, a GCN is developed to capacitate learning of finer details for classifying plant diseases and insufficiency of nutrients. The proposed method, called Plant Nutrition Deficiency and Disease Network (PND-Net), has been evaluated on two public datasets for nutrition deficiency, and two for disease classification using four backbone CNNs. The best classification performances of the proposed PND-Net are as follows: (a) 90.00% Banana and 90.54% Coffee nutrition deficiency; and (b) 96.18% Potato diseases and 84.30% on PlantDoc datasets using Xception backbone. Furthermore, additional experiments have been carried out for generalization, and the proposed method has achieved state-of-the-art performances on two public datasets, namely the Breast Cancer Histopathology Image Classification (BreakHis 40
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
今天你学习了吗完成签到,获得积分10
1秒前
1秒前
星辰大海应助会神采纳,获得10
1秒前
3秒前
zhong发布了新的文献求助10
3秒前
彳亍发布了新的文献求助10
3秒前
尹妮妮发布了新的文献求助20
3秒前
5秒前
乐观无心完成签到,获得积分10
6秒前
KeLiang发布了新的文献求助10
6秒前
六七七应助qinrunkuan采纳,获得10
7秒前
Benzene发布了新的文献求助10
9秒前
cu2mr发布了新的文献求助10
9秒前
10秒前
10秒前
莎莎完成签到,获得积分10
11秒前
辛勤的莹芝完成签到,获得积分10
11秒前
心房子完成签到,获得积分10
13秒前
楠楠完成签到,获得积分10
13秒前
思源应助peng采纳,获得10
14秒前
chc123发布了新的文献求助10
16秒前
gnufgg完成签到,获得积分10
17秒前
传奇3应助羽茗采纳,获得30
17秒前
17秒前
imxiaobing完成签到,获得积分10
18秒前
21秒前
cu2mr完成签到,获得积分10
21秒前
南境完成签到,获得积分20
21秒前
傲娇黄豆完成签到 ,获得积分10
23秒前
毛豆应助yuyu采纳,获得10
23秒前
小夭完成签到,获得积分20
26秒前
有魅力荟发布了新的文献求助10
27秒前
28秒前
fmmuxiaoqiang完成签到,获得积分10
30秒前
菌儿发布了新的文献求助30
31秒前
32秒前
liwenmming完成签到,获得积分10
34秒前
fmmuxiaoqiang发布了新的文献求助10
36秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416865
求助须知:如何正确求助?哪些是违规求助? 3018696
关于积分的说明 8884757
捐赠科研通 2705908
什么是DOI,文献DOI怎么找? 1483978
科研通“疑难数据库(出版商)”最低求助积分说明 685860
邀请新用户注册赠送积分活动 681063