Performance of explainable artificial intelligence in guiding the management of patients with a pancreatic cyst

医学 胰腺囊肿 人工智能 普通外科 囊肿 放射科 计算机科学
作者
Juan Lavista Ferres,Felipe Oviedo,Caleb Robinson,Linda C. Chu,Satomi Kawamoto,Elham Afghani,Jin He,Alison P. Klein,Mike Goggins,Christopher L. Wolfgang,Ammar A. Javed,Rahul Dodhia,Nick Papadopolous,Ken W Kinzler,Ralph H. Hruban,William B. Weeks,Elliot K. Fishman,Anne Marie Lennon
出处
期刊:Pancreatology [Elsevier]
标识
DOI:10.1016/j.pan.2024.09.001
摘要

Pancreatic cyst management can be distilled into three separate pathways – discharge, monitoring or surgery– based on the risk of malignant transformation. This study compares the performance of artificial intelligence (AI) models to clinical care for this task. Two explainable boosting machine (EBM) models were developed and evaluated using clinical features only, or clinical features and cyst fluid molecular markers (CFMM) using a publicly available dataset, consisting of 850 cases (median age 64; 65 % female) with independent training (429 cases) and holdout test cohorts (421 cases). There were 137 cysts with no malignant potential, 114 malignant cysts, and 599 IPMNs and MCNs. The EBM and EBM with CFMM models had higher accuracy for identifying patients requiring monitoring (0.88 and 0.82) and surgery (0.66 and 0.82) respectively compared with current clinical care (0.62 and 0.58). For discharge, the EBM with CFMM model had a higher accuracy (0.91) than either the EBM model (0.84) or current clinical care (0.86). In the cohort of patients who underwent surgical resection, use of the EBM-CFMM model would have decreased the number of unnecessary surgeries by 59 % (n = 92), increased correct surgeries by 7.5 % (n = 11), identified patients who require monitoring by 122 % (n = 76), and increased the number of patients correctly classified for discharge by 138 % (n = 18) compared to clinical care. EBM models had greater sensitivity and specificity for identifying the correct management compared with either clinical management or previous AI models. The model predictions are demonstrated to be interpretable by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶泠渊发布了新的文献求助10
刚刚
神说应助ppplll采纳,获得10
1秒前
无辜大侠发布了新的文献求助10
2秒前
默默的裘完成签到,获得积分10
2秒前
山椒发布了新的文献求助10
3秒前
烟花应助霓娜酱采纳,获得10
3秒前
3秒前
4秒前
4秒前
科研顺利完成签到,获得积分20
5秒前
万能图书馆应助山椒采纳,获得10
7秒前
yt完成签到,获得积分10
7秒前
cebr发布了新的文献求助10
7秒前
山楂完成签到,获得积分10
9秒前
11秒前
TT2022发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
苦咖啡行僧完成签到 ,获得积分10
13秒前
无辜大侠完成签到,获得积分10
14秒前
lbx完成签到,获得积分10
14秒前
15秒前
george完成签到,获得积分10
15秒前
cebr完成签到,获得积分10
15秒前
17秒前
gaobowang发布了新的文献求助10
18秒前
小笼包发布了新的文献求助10
18秒前
搜集达人应助无情代亦采纳,获得10
19秒前
甜甜语薇发布了新的文献求助10
20秒前
搞怪藏今完成签到 ,获得积分10
20秒前
george发布了新的文献求助10
21秒前
23秒前
...00完成签到,获得积分10
24秒前
欢喜惜儿发布了新的文献求助10
24秒前
桐桐应助TT采纳,获得10
25秒前
薰硝壤应助黄紫红采纳,获得20
27秒前
27秒前
旱钮发布了新的文献求助10
28秒前
28秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3058489
求助须知:如何正确求助?哪些是违规求助? 2714529
关于积分的说明 7441097
捐赠科研通 2359812
什么是DOI,文献DOI怎么找? 1250399
科研通“疑难数据库(出版商)”最低求助积分说明 607442
版权声明 596410