Performance of explainable artificial intelligence in guiding the management of patients with a pancreatic cyst

医学 胰腺囊肿 人工智能 普通外科 囊肿 放射科 计算机科学
作者
Juan Lavista Ferres,Felipe Oviedo,Caleb Robinson,Linda C. Chu,Satomi Kawamoto,Elham Afghani,Jin He,Alison P. Klein,Mike Goggins,Christopher L. Wolfgang,Ammar A. Javed,Rahul Dodhia,Nick Papadopolous,Ken W Kinzler,Ralph H. Hruban,William B. Weeks,Elliot K. Fishman,Anne Marie Lennon
出处
期刊:Pancreatology [Elsevier BV]
标识
DOI:10.1016/j.pan.2024.09.001
摘要

Pancreatic cyst management can be distilled into three separate pathways – discharge, monitoring or surgery– based on the risk of malignant transformation. This study compares the performance of artificial intelligence (AI) models to clinical care for this task. Two explainable boosting machine (EBM) models were developed and evaluated using clinical features only, or clinical features and cyst fluid molecular markers (CFMM) using a publicly available dataset, consisting of 850 cases (median age 64; 65 % female) with independent training (429 cases) and holdout test cohorts (421 cases). There were 137 cysts with no malignant potential, 114 malignant cysts, and 599 IPMNs and MCNs. The EBM and EBM with CFMM models had higher accuracy for identifying patients requiring monitoring (0.88 and 0.82) and surgery (0.66 and 0.82) respectively compared with current clinical care (0.62 and 0.58). For discharge, the EBM with CFMM model had a higher accuracy (0.91) than either the EBM model (0.84) or current clinical care (0.86). In the cohort of patients who underwent surgical resection, use of the EBM-CFMM model would have decreased the number of unnecessary surgeries by 59 % (n = 92), increased correct surgeries by 7.5 % (n = 11), identified patients who require monitoring by 122 % (n = 76), and increased the number of patients correctly classified for discharge by 138 % (n = 18) compared to clinical care. EBM models had greater sensitivity and specificity for identifying the correct management compared with either clinical management or previous AI models. The model predictions are demonstrated to be interpretable by clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ste完成签到,获得积分10
刚刚
大模型应助郎梟采纳,获得10
刚刚
称心的妖妖完成签到,获得积分10
刚刚
Lucas应助许昊龙采纳,获得10
1秒前
1秒前
A2QD发布了新的文献求助10
1秒前
sarah完成签到,获得积分10
1秒前
xymy完成签到,获得积分20
1秒前
1秒前
百事从欢发布了新的文献求助10
2秒前
欢呼妙菱发布了新的文献求助10
2秒前
3秒前
wang完成签到,获得积分10
3秒前
书虫完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
想吃烤鸭发布了新的文献求助10
4秒前
CAOHOU应助沉默冬卉采纳,获得10
4秒前
SciGPT应助xymy采纳,获得10
4秒前
lii应助水牛采纳,获得10
5秒前
小马发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
俏皮小松鼠给俏皮小松鼠的求助进行了留言
7秒前
8秒前
小曾应助流白采纳,获得10
9秒前
9秒前
甜美怜蕾完成签到 ,获得积分10
9秒前
吉恩完成签到,获得积分20
10秒前
我劝告了风完成签到,获得积分10
11秒前
11秒前
yuzi完成签到,获得积分10
11秒前
tanrui完成签到,获得积分10
11秒前
郎梟发布了新的文献求助10
11秒前
YZ完成签到,获得积分10
12秒前
12秒前
RadiantYT发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650