非闪锌矿
氧化还原
腐败舍瓦内拉菌
化学
电子受体
硝酸盐
无机化学
电子供体
溶解
碳酸氢盐
氧化剂
粘土矿物
光化学
矿物学
细菌
催化作用
生物化学
有机化学
物理化学
生物
遗传学
作者
Linduo Zhao,Hailiang Dong,Ravi Kukkadapu,Qiang Zeng,Richard E. Edelmann,Martin Pentrák,Abinash Agrawal
标识
DOI:10.1021/acs.est.5b00131
摘要
Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective of this research was to study microbially mediated redox cycles of Fe in nontronite (NAu-2). During the reduction phase, structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 as mediator in bicarbonate- and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served as electron donor and nitrate as electron acceptor. Nitrate-dependent Fe(II)-oxidizing bacterium Pseudogulbenkiania sp. strain 2002 was added as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo three redox cycles without significant dissolution. Fe(II) in bioreduced samples occurred in two distinct environments, at edges and in the interior of the NAu-2 structure. Nitrate reduction to nitrogen gas was coupled with oxidation of edge-Fe(II) and part of interior-Fe(II) under both buffer conditions, and its extent and rate did not change with Fe redox cycles. These results suggest that biological redox cycling of structural Fe in phyllosilicates is a reversible process and has important implications for biogeochemical cycles of carbon, nitrogen, and other nutrients in natural environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI