Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion

环境科学 空气污染 气象学 污染 人口 遥感 地理 生态学 生物 社会学 人口学 有机化学 化学
作者
Guannan Geng,Qingyang Xiao,Shigan Liu,Xiaodong Liu,Jing Cheng,Yixuan Zheng,Tao Xue,Dan Tong,Bo Zheng,Yiran Peng,Xiaomeng Huang,Kebin He,Qiang Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (17): 12106-12115 被引量:338
标识
DOI:10.1021/acs.est.1c01863
摘要

Air pollution has altered the Earth's radiation balance, disturbed the ecosystem, and increased human morbidity and mortality. Accordingly, a full-coverage high-resolution air pollutant data set with timely updates and historical long-term records is essential to support both research and environmental management. Here, for the first time, we develop a near real-time air pollutant database known as Tracking Air Pollution in China (TAP, http://tapdata.org.cn/) that combines information from multiple data sources, including ground observations, satellite aerosol optical depth (AOD), operational chemical transport model simulations, and other ancillary data such as meteorological fields, land use data, population, and elevation. Daily full-coverage PM2.5 data at a spatial resolution of 10 km is our first near real-time product. The TAP PM2.5 is estimated based on a two-stage machine learning model coupled with the synthetic minority oversampling technique and a tree-based gap-filling method. Our model has an averaged out-of-bag cross-validation R2 of 0.83 for different years, which is comparable to those of other studies, but improves its performance at high pollution levels and fills the gaps in missing AOD on daily scale. The full coverage and near real-time updates of the daily PM2.5 data allow us to track the day-to-day variations in PM2.5 concentrations over China in a timely manner. The long-term records of PM2.5 data since 2000 will also support policy assessments and health impact studies. The TAP PM2.5 data are publicly available through our website for sharing with the research and policy communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助wawa采纳,获得10
刚刚
刚刚
刚刚
DDDD应助伶俐如南采纳,获得30
1秒前
liuliqiong完成签到,获得积分10
1秒前
1秒前
哈哈哈哈完成签到 ,获得积分10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
苏卿应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
VDC应助科研通管家采纳,获得30
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
VDC应助科研通管家采纳,获得30
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得30
3秒前
yyi1应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
从容盼山应助科研通管家采纳,获得10
3秒前
小郭子应助科研通管家采纳,获得20
3秒前
pluto应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
326503177发布了新的文献求助10
4秒前
机智初夏发布了新的文献求助10
4秒前
顺心迎南完成签到,获得积分10
4秒前
Sonder完成签到,获得积分10
5秒前
hhui发布了新的文献求助30
5秒前
xingyue发布了新的文献求助10
6秒前
科研通AI5应助小陆采纳,获得10
6秒前
6秒前
重要的向露关注了科研通微信公众号
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199