Machine Learning-Enabled High-Resolution Dynamic Deuterium MR Spectroscopic Imaging

子空间拓扑 计算机科学 人工智能 降噪 灵敏度(控制系统) 深度学习 噪音(视频) 正规化(语言学) 降维 信号子空间 机器学习 电子工程 图像(数学) 工程类
作者
Yudu Li,Yibo Zhao,Rong Guo,Tao Wang,Yi Zhang,Matthew R. Chrostek,Walter C. Low,Xiao‐Hong Zhu,Zhi‐Pei Liang,Wei Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3879-3890 被引量:22
标识
DOI:10.1109/tmi.2021.3101149
摘要

Deuterium magnetic resonance spectroscopic imaging (DMRSI) has recently been recognized as a potentially powerful tool for noninvasive imaging of brain energy metabolism and tumor. However, the low sensitivity of DMRSI has significantly limited its utility for both research and clinical applications. This work presents a novel machine learning-based method to address this limitation. The proposed method synergistically integrates physics-based subspace modeling and data-driven deep learning for effective denoising, making high-resolution dynamic DMRSI possible. Specifically, a novel subspace model was used to represent the dynamic DMRSI signals; deep neural networks were trained to capture the low-dimensional manifolds of the spectral and temporal distributions of practical dynamic DMRSI data. The learned subspace and manifold structures were integrated via a regularization formulation to remove measurement noise. Theoretical analysis, computer simulations, and in vivo experiments have been conducted to demonstrate the denoising efficacy of the proposed method which enabled high-resolution imaging capability. The translational potential was demonstrated in tumor-bearing rats, where the Warburg effect associated with cancer metabolism and tumor heterogeneity were successfully captured. The new method may not only provide an effective tool to enhance the sensitivity of DMRSI for basic research and clinical applications but also provide a framework for denoising other spatiospectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助邱洪晓采纳,获得10
刚刚
1秒前
1900完成签到,获得积分10
1秒前
涛声依旧发布了新的文献求助10
1秒前
科研式发布了新的文献求助10
2秒前
uu完成签到 ,获得积分10
2秒前
深情安青应助抽纸盒采纳,获得10
2秒前
眼睛大的黑猫完成签到,获得积分10
2秒前
3秒前
wanci应助bing采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
一念初见发布了新的文献求助10
4秒前
水水的橙子完成签到,获得积分10
5秒前
充电宝应助ddddd采纳,获得10
5秒前
5秒前
李盛男完成签到,获得积分10
5秒前
罗玉完成签到,获得积分10
5秒前
qilin发布了新的文献求助10
6秒前
彭于晏应助niko采纳,获得10
6秒前
h41692011完成签到 ,获得积分10
6秒前
6秒前
伟蓓1314发布了新的文献求助10
6秒前
shfgref完成签到,获得积分10
7秒前
PFD000发布了新的文献求助20
7秒前
7秒前
7秒前
风吹麦田应助huhdcid采纳,获得50
7秒前
JThuo完成签到,获得积分10
7秒前
8秒前
lllly发布了新的文献求助10
8秒前
东方元语应助doing采纳,获得20
8秒前
8秒前
在英快尔发布了新的文献求助10
8秒前
NexusExplorer应助幽默书瑶采纳,获得10
8秒前
Littlerain~完成签到,获得积分10
9秒前
9秒前
blue发布了新的文献求助20
9秒前
完美世界应助淡然钢铁侠采纳,获得10
9秒前
慕青应助WuFen采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123