Machine Learning-Enabled High-Resolution Dynamic Deuterium MR Spectroscopic Imaging

子空间拓扑 计算机科学 人工智能 降噪 灵敏度(控制系统) 深度学习 噪音(视频) 正规化(语言学) 降维 信号子空间 机器学习 电子工程 图像(数学) 工程类
作者
Yudu Li,Yibo Zhao,Rong Guo,Tao Wang,Yi Zhang,Matthew R. Chrostek,Walter C. Low,Xiao‐Hong Zhu,Zhi‐Pei Liang,Wei Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3879-3890 被引量:22
标识
DOI:10.1109/tmi.2021.3101149
摘要

Deuterium magnetic resonance spectroscopic imaging (DMRSI) has recently been recognized as a potentially powerful tool for noninvasive imaging of brain energy metabolism and tumor. However, the low sensitivity of DMRSI has significantly limited its utility for both research and clinical applications. This work presents a novel machine learning-based method to address this limitation. The proposed method synergistically integrates physics-based subspace modeling and data-driven deep learning for effective denoising, making high-resolution dynamic DMRSI possible. Specifically, a novel subspace model was used to represent the dynamic DMRSI signals; deep neural networks were trained to capture the low-dimensional manifolds of the spectral and temporal distributions of practical dynamic DMRSI data. The learned subspace and manifold structures were integrated via a regularization formulation to remove measurement noise. Theoretical analysis, computer simulations, and in vivo experiments have been conducted to demonstrate the denoising efficacy of the proposed method which enabled high-resolution imaging capability. The translational potential was demonstrated in tumor-bearing rats, where the Warburg effect associated with cancer metabolism and tumor heterogeneity were successfully captured. The new method may not only provide an effective tool to enhance the sensitivity of DMRSI for basic research and clinical applications but also provide a framework for denoising other spatiospectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助xxxfff采纳,获得10
4秒前
4秒前
nature完成签到 ,获得积分10
6秒前
6秒前
Esteem发布了新的文献求助10
7秒前
HopeStar发布了新的文献求助10
9秒前
飞天奶酪完成签到 ,获得积分10
11秒前
12秒前
Yhcir完成签到 ,获得积分10
13秒前
小啦啦3082发布了新的文献求助10
16秒前
22秒前
小蘑菇应助无妄海采纳,获得10
22秒前
酷波er应助Zx采纳,获得10
22秒前
GLLHHH发布了新的文献求助10
27秒前
脑洞疼应助ggjy采纳,获得10
27秒前
28秒前
curtisness应助小天使海蒂采纳,获得10
28秒前
胡蝶完成签到 ,获得积分10
32秒前
无妄海发布了新的文献求助10
33秒前
cnspower完成签到,获得积分0
34秒前
34秒前
广旭完成签到 ,获得积分10
36秒前
GLLHHH完成签到,获得积分10
36秒前
Lucas应助Eunhyo采纳,获得10
36秒前
执着无声应助weiyuqi采纳,获得10
37秒前
乐乐乐乐乐乐应助yao采纳,获得10
39秒前
傅一笑发布了新的文献求助10
39秒前
Xing发布了新的文献求助30
40秒前
小小牛完成签到 ,获得积分10
43秒前
curtisness应助TIANTIAN采纳,获得10
44秒前
好吃完成签到 ,获得积分10
46秒前
agility完成签到,获得积分10
46秒前
汉堡包应助流水z采纳,获得10
47秒前
传奇3应助Xing采纳,获得10
48秒前
51秒前
52秒前
56秒前
简单以冬发布了新的文献求助10
56秒前
雾沉沉发布了新的文献求助10
57秒前
无花果应助小啦啦3082采纳,获得30
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358849
求助须知:如何正确求助?哪些是违规求助? 2981936
关于积分的说明 8701312
捐赠科研通 2663575
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675158
邀请新用户注册赠送积分活动 666196