已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Enabled High-Resolution Dynamic Deuterium MR Spectroscopic Imaging

子空间拓扑 计算机科学 人工智能 降噪 灵敏度(控制系统) 深度学习 噪音(视频) 正规化(语言学) 降维 信号子空间 机器学习 电子工程 图像(数学) 工程类
作者
Yudu Li,Yibo Zhao,Rong Guo,Tao Wang,Yi Zhang,Matthew R. Chrostek,Walter C. Low,Xiao‐Hong Zhu,Zhi‐Pei Liang,Wei Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3879-3890 被引量:22
标识
DOI:10.1109/tmi.2021.3101149
摘要

Deuterium magnetic resonance spectroscopic imaging (DMRSI) has recently been recognized as a potentially powerful tool for noninvasive imaging of brain energy metabolism and tumor. However, the low sensitivity of DMRSI has significantly limited its utility for both research and clinical applications. This work presents a novel machine learning-based method to address this limitation. The proposed method synergistically integrates physics-based subspace modeling and data-driven deep learning for effective denoising, making high-resolution dynamic DMRSI possible. Specifically, a novel subspace model was used to represent the dynamic DMRSI signals; deep neural networks were trained to capture the low-dimensional manifolds of the spectral and temporal distributions of practical dynamic DMRSI data. The learned subspace and manifold structures were integrated via a regularization formulation to remove measurement noise. Theoretical analysis, computer simulations, and in vivo experiments have been conducted to demonstrate the denoising efficacy of the proposed method which enabled high-resolution imaging capability. The translational potential was demonstrated in tumor-bearing rats, where the Warburg effect associated with cancer metabolism and tumor heterogeneity were successfully captured. The new method may not only provide an effective tool to enhance the sensitivity of DMRSI for basic research and clinical applications but also provide a framework for denoising other spatiospectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助冷静青文采纳,获得10
刚刚
nole发布了新的文献求助10
刚刚
刚刚
赘婿应助跳跃的浩阑采纳,获得10
1秒前
2秒前
浮游应助执行正义采纳,获得10
2秒前
毅诚菌发布了新的文献求助10
3秒前
Shueason完成签到,获得积分10
5秒前
6秒前
芹菜完成签到 ,获得积分10
6秒前
XUNAN完成签到 ,获得积分10
7秒前
星辰大海应助隐形的烧鹅采纳,获得10
7秒前
7秒前
科研通AI6应助小阿发采纳,获得10
8秒前
可乐鲨鱼翅关注了科研通微信公众号
12秒前
12秒前
12秒前
欣慰立轩发布了新的文献求助10
12秒前
lwl完成签到,获得积分10
12秒前
wuyaRY发布了新的文献求助10
13秒前
今后应助毅诚菌采纳,获得10
13秒前
14秒前
黎明发布了新的文献求助10
16秒前
17秒前
朱建军发布了新的文献求助10
17秒前
18秒前
maher应助lll采纳,获得10
19秒前
19秒前
19秒前
跳跳虎发布了新的文献求助30
20秒前
虚心的绝施完成签到 ,获得积分10
21秒前
21秒前
顺心牛排完成签到,获得积分10
24秒前
tczw667完成签到,获得积分10
24秒前
25秒前
zhangyueyue完成签到,获得积分10
27秒前
28秒前
复杂曼梅完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263727
捐赠科研通 4480534
什么是DOI,文献DOI怎么找? 2454469
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1421016