Machine Learning-Enabled High-Resolution Dynamic Deuterium MR Spectroscopic Imaging

子空间拓扑 计算机科学 人工智能 降噪 灵敏度(控制系统) 深度学习 噪音(视频) 正规化(语言学) 降维 信号子空间 机器学习 电子工程 图像(数学) 工程类
作者
Yudu Li,Yibo Zhao,Rong Guo,Tao Wang,Yi Zhang,Matthew R. Chrostek,Walter C. Low,Xiao‐Hong Zhu,Zhi‐Pei Liang,Wei Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3879-3890 被引量:22
标识
DOI:10.1109/tmi.2021.3101149
摘要

Deuterium magnetic resonance spectroscopic imaging (DMRSI) has recently been recognized as a potentially powerful tool for noninvasive imaging of brain energy metabolism and tumor. However, the low sensitivity of DMRSI has significantly limited its utility for both research and clinical applications. This work presents a novel machine learning-based method to address this limitation. The proposed method synergistically integrates physics-based subspace modeling and data-driven deep learning for effective denoising, making high-resolution dynamic DMRSI possible. Specifically, a novel subspace model was used to represent the dynamic DMRSI signals; deep neural networks were trained to capture the low-dimensional manifolds of the spectral and temporal distributions of practical dynamic DMRSI data. The learned subspace and manifold structures were integrated via a regularization formulation to remove measurement noise. Theoretical analysis, computer simulations, and in vivo experiments have been conducted to demonstrate the denoising efficacy of the proposed method which enabled high-resolution imaging capability. The translational potential was demonstrated in tumor-bearing rats, where the Warburg effect associated with cancer metabolism and tumor heterogeneity were successfully captured. The new method may not only provide an effective tool to enhance the sensitivity of DMRSI for basic research and clinical applications but also provide a framework for denoising other spatiospectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落叶的季节完成签到,获得积分10
刚刚
1秒前
bkagyin应助妙aaa采纳,获得10
1秒前
Zhang发布了新的文献求助10
1秒前
1秒前
1秒前
li发布了新的文献求助10
1秒前
1秒前
1秒前
orixero应助自由思枫采纳,获得10
1秒前
2秒前
蓝色的云发布了新的文献求助30
2秒前
朴实的绮南完成签到,获得积分10
2秒前
领导范儿应助zhang-leo采纳,获得10
2秒前
斯文败类应助无限的兔子采纳,获得10
2秒前
薛小飞飞完成签到 ,获得积分10
2秒前
英俊的铭应助与卿123采纳,获得80
2秒前
3秒前
3秒前
oldjeff完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
style完成签到,获得积分20
5秒前
小青椒应助csy0303采纳,获得30
5秒前
元白发布了新的文献求助10
5秒前
shineshine发布了新的文献求助10
7秒前
阿德利企鹅完成签到 ,获得积分10
7秒前
7秒前
丘比特应助TianY天翊采纳,获得10
7秒前
dd完成签到,获得积分10
8秒前
8秒前
Lucas应助研友_Z7QedL采纳,获得10
9秒前
9秒前
666发布了新的文献求助10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884