An Analysis of QSAR Research Based on Machine Learning Concepts

数量结构-活动关系 机器学习 计算机科学 人工智能 分类 支持向量机 适用范围 特征选择 生化工程 人工神经网络 工程类
作者
Mohammad Reza Keyvanpour,Mehrnoush Barani Shirzad
出处
期刊:Current Drug Discovery Technologies [Bentham Science]
卷期号:18 (1): 17-30 被引量:25
标识
DOI:10.2174/1570163817666200316104404
摘要

Quantitative Structure-Activity Relationship (QSAR) is a popular approach developed to correlate chemical molecules with their biological activities based on their chemical structures. Machine learning techniques have proved to be promising solutions to QSAR modeling. Due to the significant role of machine learning strategies in QSAR modeling, this area of research has attracted much attention from researchers. A considerable amount of literature has been published on machine learning based QSAR modeling methodologies whilst this domain still suffers from lack of a recent and comprehensive analysis of these algorithms. This study systematically reviews the application of machine learning algorithms in QSAR, aiming to provide an analytical framework. For this purpose, we present a framework called 'ML-QSAR'. This framework has been designed for future research to: a) facilitate the selection of proper strategies among existing algorithms according to the application area requirements, b) help to develop and ameliorate current methods and c) providing a platform to study existing methodologies comparatively. In ML-QSAR, first a structured categorization is depicted which studied the QSAR modeling research based on machine models. Then several criteria are introduced in order to assess the models. Finally, inspired by aforementioned criteria the qualitative analysis is carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松海云完成签到,获得积分10
1秒前
1秒前
1秒前
思源应助FOODHUA采纳,获得10
4秒前
dyy发布了新的文献求助10
6秒前
跳跃的白梅应助麋鹿采纳,获得10
7秒前
7秒前
专一的傲白完成签到 ,获得积分10
7秒前
桐桐应助jjb123666采纳,获得10
7秒前
7秒前
whywhy完成签到,获得积分10
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
烟花应助跳跃仙人掌采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
希望天下0贩的0应助zr237618采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
dd完成签到 ,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
zyfqpc应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
幽默觅翠完成签到,获得积分10
9秒前
马大翔应助科研通管家采纳,获得20
9秒前
9秒前
en发布了新的文献求助10
9秒前
9秒前
橙花发布了新的文献求助10
9秒前
9秒前
mio完成签到,获得积分10
9秒前
10秒前
今后应助阮楷瑞采纳,获得10
10秒前
松松完成签到,获得积分10
11秒前
11秒前
11秒前
zuzu完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919