Unraveling the dislocation–precipitate interactions in high-entropy alloys

材料科学 层错能 高熵合金 位错 打滑(空气动力学) 叠加断层 极限抗拉强度 材料的强化机理 原子单位 凝聚态物理 堆积 结晶学 复合材料 微观结构 热力学 核磁共振 量子力学 物理 化学
作者
Jia Li,Haotian Chen,Qihong Fang,Chao Jiang,Yong Liu,Peter K. Liaw
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:133: 102819-102819 被引量:107
标识
DOI:10.1016/j.ijplas.2020.102819
摘要

The precipitates play a significant role in not only enhancing the strength, but also maintaining the high toughness in alloys. However, the interactions of the nanoscale precipitates with dislocations in the high entropy alloys (HEAs) are difficult to observe directly by in-situ TEM experiments due to the limits of the resolution and time. Here, using atomic simulations we report the synergistic strengthening of the coherent precipitate and atomic-scale lattice distortion in the HEAs at cryogenic/elevated temperatures. The effects of temperature, chemical disorder, precipitate spacing, precipitate size, elemental segregation, and dislocation-cutting number on the critical stress for the dislocation to overcome a row of precipitates are studied. A random stacking fault energy landscape along the slip plane, the lattice distortion at different temperatures, and the interface/surface energy at various crystallographic orientations are obtained. Compared with the traditional metals and alloys, HEAs have the severe atomic-scale lattice distortions to generate the local high tensile/compressive stress fields. This complex stress causes the dislocation line to bend, and thus improves the dislocation slip resistance, resulting in the strong solid-solution strengthening. The stacking fault strengthening induced by the obvious difference of the stacking fault energies between the HEA matrix and precipitate (within the inner of the HEA matrix), and the formation of the antiphase domain boundary contribute to the high strength. The precipitate embedded by the solute atoms produces the strong lattice distortion to enhance the dislocation slip resistance at high temperatures. Hence, the current results provide the mechanistic insight into the phenomenon that the coherent precipitate combined with the severe atomic-scale lattice distortion can enhance the strength at cryogenic/elevated temperatures to further broaden the scope of applications of advanced HEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助炒米粉采纳,获得10
刚刚
tttttt完成签到,获得积分10
刚刚
LANzzy完成签到,获得积分10
刚刚
memory发布了新的文献求助10
1秒前
优美树叶完成签到,获得积分10
1秒前
1秒前
科研狗完成签到,获得积分10
2秒前
2秒前
WW完成签到 ,获得积分10
3秒前
shhoing应助单薄的念珍采纳,获得10
4秒前
夏依瑶完成签到,获得积分10
4秒前
李十发布了新的文献求助10
5秒前
梧桐树完成签到,获得积分10
5秒前
6秒前
7秒前
付佟秋烟发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
希望天下0贩的0应助lorentzh采纳,获得10
8秒前
ww完成签到,获得积分10
8秒前
8秒前
科研通AI5应助pharmstudent采纳,获得10
9秒前
9秒前
专注凌青发布了新的文献求助10
9秒前
9秒前
9秒前
清沐发布了新的文献求助10
9秒前
10秒前
lfs完成签到 ,获得积分10
10秒前
10秒前
方星发布了新的文献求助10
10秒前
科研通AI5应助nanjiren采纳,获得30
11秒前
12秒前
12秒前
小涂大大完成签到,获得积分10
12秒前
科目三应助晶晶采纳,获得10
12秒前
科研通AI5应助无限小霜采纳,获得10
13秒前
彼岸发布了新的文献求助10
14秒前
Nzee完成签到,获得积分10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836