Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation

卷积神经网络 人工智能 计算机科学 图像分割 计算机视觉 加权 分割 模式识别(心理学) 放射科 医学
作者
Debapriya Banik,Kaushiki Roy,Debotosh Bhattacharjee,Mita Nasipuri,Ondřej Krejcar
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:66
标识
DOI:10.1109/tim.2020.3015607
摘要

Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade of malignancy. This procedure is time-consuming and expensive, and removal of benign polyp for analysis signifies the inefficiency of the diagnosis system. These drawbacks inspired us to develop an automatic vision-based analysis method for preliminary in vivo malignancy analysis of the polyp region. In this work, we have proposed a fusion-based polyp segmentation network, namely, Polyp-Net. Recently, convolutional neural networks (CNNs) have shown immense success in the domain of medical image analysis as it can exploit in-depth significant features with high discrimination capabilities. Therefore, motivated by these insights, we have proposed an enriched version of CNN with a nascent pooling mechanism, namely dual-tree wavelet pooled CNN (DT-WpCNN). The resultant segmented mask contains some surplus high-intensity regions apart from the polyp region. These shortcomings are avoided using a new variation of the region-based level-set method, namely, the local gradient weighting-embedded level-set method (LGWe-LSM), which shows a significant reduction of false-positive rate. The pixel-level fusion of the two enhanced methods shows more potentiality in the segmentation of the polyp regions. Our proposed network is trained on CVC-colon DB and tested on CVC-clinic DB. It achieves a dice score of 0.839, volume-similarity of 0.863, precision of 0.836, recall of 0.811, F1-score of 0.823, F2-score of 0.815, and Hausdorff distance of 21.796 which outperforms the existing baseline CNN's and recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward发布了新的文献求助30
刚刚
浮游应助和老爹豆豆采纳,获得10
刚刚
闫小天天完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
666发布了新的文献求助10
2秒前
英俊的铭应助热情的远锋采纳,获得10
2秒前
小二郎应助vebb采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
和谐诗双发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
4秒前
Epiphany发布了新的文献求助10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
蔡宇滔完成签到,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Ava应助涔雨采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得20
5秒前
5秒前
清风应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058