Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation

卷积神经网络 人工智能 计算机科学 图像分割 计算机视觉 加权 分割 模式识别(心理学) 放射科 医学
作者
Debapriya Banik,Kaushiki Roy,Debotosh Bhattacharjee,Mita Nasipuri,Ondřej Krejcar
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:66
标识
DOI:10.1109/tim.2020.3015607
摘要

Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade of malignancy. This procedure is time-consuming and expensive, and removal of benign polyp for analysis signifies the inefficiency of the diagnosis system. These drawbacks inspired us to develop an automatic vision-based analysis method for preliminary in vivo malignancy analysis of the polyp region. In this work, we have proposed a fusion-based polyp segmentation network, namely, Polyp-Net. Recently, convolutional neural networks (CNNs) have shown immense success in the domain of medical image analysis as it can exploit in-depth significant features with high discrimination capabilities. Therefore, motivated by these insights, we have proposed an enriched version of CNN with a nascent pooling mechanism, namely dual-tree wavelet pooled CNN (DT-WpCNN). The resultant segmented mask contains some surplus high-intensity regions apart from the polyp region. These shortcomings are avoided using a new variation of the region-based level-set method, namely, the local gradient weighting-embedded level-set method (LGWe-LSM), which shows a significant reduction of false-positive rate. The pixel-level fusion of the two enhanced methods shows more potentiality in the segmentation of the polyp regions. Our proposed network is trained on CVC-colon DB and tested on CVC-clinic DB. It achieves a dice score of 0.839, volume-similarity of 0.863, precision of 0.836, recall of 0.811, F1-score of 0.823, F2-score of 0.815, and Hausdorff distance of 21.796 which outperforms the existing baseline CNN's and recent state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故酒应助Jojo采纳,获得10
1秒前
昵称完成签到,获得积分10
1秒前
2秒前
梦丽有人发布了新的文献求助10
2秒前
5秒前
Twonej应助cl采纳,获得30
5秒前
JamesPei应助柯擎汉采纳,获得10
6秒前
脑洞疼应助张凤采纳,获得10
7秒前
hay发布了新的文献求助10
7秒前
7秒前
肉丸完成签到 ,获得积分10
8秒前
8秒前
teeth发布了新的文献求助10
9秒前
10秒前
hydrogen完成签到,获得积分10
11秒前
kun发布了新的文献求助10
11秒前
11秒前
11秒前
FashionBoy应助yana采纳,获得10
11秒前
xulin完成签到,获得积分10
12秒前
eternity136发布了新的文献求助10
14秒前
甜甜的枫发布了新的文献求助10
15秒前
扎根发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
上官若男应助小李子采纳,获得10
17秒前
17秒前
17秒前
18秒前
lkk完成签到,获得积分10
18秒前
19秒前
mjh完成签到,获得积分10
19秒前
飞飞翔的小马完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
张凤发布了新的文献求助10
21秒前
liaotao完成签到 ,获得积分10
21秒前
21秒前
22秒前
一折悲画扇完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711883
求助须知:如何正确求助?哪些是违规求助? 5206296
关于积分的说明 15265590
捐赠科研通 4864003
什么是DOI,文献DOI怎么找? 2611125
邀请新用户注册赠送积分活动 1561399
关于科研通互助平台的介绍 1518729