Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation

卷积神经网络 人工智能 计算机科学 图像分割 计算机视觉 加权 分割 模式识别(心理学) 放射科 医学
作者
Debapriya Banik,Kaushiki Roy,Debotosh Bhattacharjee,Mita Nasipuri,Ondřej Krejcar
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:66
标识
DOI:10.1109/tim.2020.3015607
摘要

Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade of malignancy. This procedure is time-consuming and expensive, and removal of benign polyp for analysis signifies the inefficiency of the diagnosis system. These drawbacks inspired us to develop an automatic vision-based analysis method for preliminary in vivo malignancy analysis of the polyp region. In this work, we have proposed a fusion-based polyp segmentation network, namely, Polyp-Net. Recently, convolutional neural networks (CNNs) have shown immense success in the domain of medical image analysis as it can exploit in-depth significant features with high discrimination capabilities. Therefore, motivated by these insights, we have proposed an enriched version of CNN with a nascent pooling mechanism, namely dual-tree wavelet pooled CNN (DT-WpCNN). The resultant segmented mask contains some surplus high-intensity regions apart from the polyp region. These shortcomings are avoided using a new variation of the region-based level-set method, namely, the local gradient weighting-embedded level-set method (LGWe-LSM), which shows a significant reduction of false-positive rate. The pixel-level fusion of the two enhanced methods shows more potentiality in the segmentation of the polyp regions. Our proposed network is trained on CVC-colon DB and tested on CVC-clinic DB. It achieves a dice score of 0.839, volume-similarity of 0.863, precision of 0.836, recall of 0.811, F1-score of 0.823, F2-score of 0.815, and Hausdorff distance of 21.796 which outperforms the existing baseline CNN's and recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Danboard采纳,获得10
刚刚
Vickicherry应助酷酷半芹采纳,获得10
刚刚
1秒前
正直无极发布了新的文献求助10
1秒前
1秒前
小明同学发布了新的文献求助10
1秒前
穿堂风发布了新的文献求助10
2秒前
3秒前
西红柿炒番茄完成签到,获得积分10
5秒前
周周发布了新的文献求助10
6秒前
快乐马里奥完成签到 ,获得积分10
7秒前
guard发布了新的文献求助10
9秒前
Vickicherry应助aillyzm采纳,获得20
10秒前
谨慎雪碧发布了新的文献求助10
14秒前
和谐乐儿完成签到,获得积分10
14秒前
14秒前
生动路人应助阳佟半仙采纳,获得10
15秒前
TWT驳回了孙燕应助
16秒前
周周完成签到,获得积分10
16秒前
淡定从凝发布了新的文献求助10
16秒前
慕青应助哭泣的犀牛采纳,获得10
17秒前
林志迎发布了新的文献求助10
17秒前
888发布了新的文献求助10
17秒前
810完成签到,获得积分10
18秒前
slx完成签到,获得积分10
19秒前
斯文败类应助tanrui采纳,获得10
20秒前
22秒前
23秒前
25秒前
25秒前
程宇发布了新的文献求助10
26秒前
青松果发布了新的文献求助10
28秒前
810关注了科研通微信公众号
30秒前
lijunhao发布了新的文献求助30
31秒前
32秒前
34秒前
123完成签到,获得积分10
36秒前
zojoy完成签到,获得积分10
37秒前
沉静的时光完成签到 ,获得积分10
39秒前
xdc发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994126
求助须知:如何正确求助?哪些是违规求助? 3534654
关于积分的说明 11266191
捐赠科研通 3274571
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724