亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation

卷积神经网络 人工智能 计算机科学 图像分割 计算机视觉 加权 分割 模式识别(心理学) 放射科 医学
作者
Debapriya Banik,Kaushiki Roy,Debotosh Bhattacharjee,Mita Nasipuri,Ondřej Krejcar
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:66
标识
DOI:10.1109/tim.2020.3015607
摘要

Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade of malignancy. This procedure is time-consuming and expensive, and removal of benign polyp for analysis signifies the inefficiency of the diagnosis system. These drawbacks inspired us to develop an automatic vision-based analysis method for preliminary in vivo malignancy analysis of the polyp region. In this work, we have proposed a fusion-based polyp segmentation network, namely, Polyp-Net. Recently, convolutional neural networks (CNNs) have shown immense success in the domain of medical image analysis as it can exploit in-depth significant features with high discrimination capabilities. Therefore, motivated by these insights, we have proposed an enriched version of CNN with a nascent pooling mechanism, namely dual-tree wavelet pooled CNN (DT-WpCNN). The resultant segmented mask contains some surplus high-intensity regions apart from the polyp region. These shortcomings are avoided using a new variation of the region-based level-set method, namely, the local gradient weighting-embedded level-set method (LGWe-LSM), which shows a significant reduction of false-positive rate. The pixel-level fusion of the two enhanced methods shows more potentiality in the segmentation of the polyp regions. Our proposed network is trained on CVC-colon DB and tested on CVC-clinic DB. It achieves a dice score of 0.839, volume-similarity of 0.863, precision of 0.836, recall of 0.811, F1-score of 0.823, F2-score of 0.815, and Hausdorff distance of 21.796 which outperforms the existing baseline CNN's and recent state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUO发布了新的文献求助10
刚刚
2021完成签到 ,获得积分10
2秒前
5秒前
赵彧发布了新的文献求助10
5秒前
Fan完成签到 ,获得积分10
6秒前
evz应助小y要读书采纳,获得10
7秒前
只只完成签到,获得积分20
10秒前
10秒前
13秒前
王君青见完成签到,获得积分10
13秒前
15秒前
15秒前
华仔应助陈文娜采纳,获得10
17秒前
潇洒的诗桃应助王君青见采纳,获得10
18秒前
18秒前
苏久发布了新的文献求助10
21秒前
27秒前
lijiayi完成签到,获得积分20
29秒前
lijiayi发布了新的文献求助10
32秒前
35秒前
浮游应助科研通管家采纳,获得10
38秒前
香蕉觅云应助科研通管家采纳,获得30
38秒前
星辰大海应助科研通管家采纳,获得10
38秒前
王炸发布了新的文献求助10
38秒前
上官若男应助科研通管家采纳,获得10
38秒前
打打应助科研通管家采纳,获得10
38秒前
大个应助科研通管家采纳,获得10
38秒前
38秒前
科目三应助科研通管家采纳,获得10
38秒前
大模型应助科研通管家采纳,获得10
38秒前
整齐半青完成签到 ,获得积分10
42秒前
42秒前
lulumomoxixi完成签到 ,获得积分10
47秒前
48秒前
ccc完成签到 ,获得积分10
49秒前
孟浩然完成签到 ,获得积分10
49秒前
任仕春发布了新的文献求助10
53秒前
54秒前
科研王完成签到 ,获得积分10
59秒前
开拖拉机的芍药完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509205
求助须知:如何正确求助?哪些是违规求助? 4604206
关于积分的说明 14489373
捐赠科研通 4538907
什么是DOI,文献DOI怎么找? 2487224
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441867