Polyp-Net: A Multimodel Fusion Network for Polyp Segmentation

卷积神经网络 人工智能 计算机科学 图像分割 计算机视觉 加权 分割 模式识别(心理学) 放射科 医学
作者
Debapriya Banik,Kaushiki Roy,Debotosh Bhattacharjee,Mita Nasipuri,Ondřej Krejcar
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:66
标识
DOI:10.1109/tim.2020.3015607
摘要

Computer-aided diagnosis of disease primarily depends on proper vision-based measurement (VBM). The traditional approach followed for diagnosis of colorectal cancer includes a manual screening of colorectum via a colonoscope and resection of polyps for histopathological analysis to decide the grade of malignancy. This procedure is time-consuming and expensive, and removal of benign polyp for analysis signifies the inefficiency of the diagnosis system. These drawbacks inspired us to develop an automatic vision-based analysis method for preliminary in vivo malignancy analysis of the polyp region. In this work, we have proposed a fusion-based polyp segmentation network, namely, Polyp-Net. Recently, convolutional neural networks (CNNs) have shown immense success in the domain of medical image analysis as it can exploit in-depth significant features with high discrimination capabilities. Therefore, motivated by these insights, we have proposed an enriched version of CNN with a nascent pooling mechanism, namely dual-tree wavelet pooled CNN (DT-WpCNN). The resultant segmented mask contains some surplus high-intensity regions apart from the polyp region. These shortcomings are avoided using a new variation of the region-based level-set method, namely, the local gradient weighting-embedded level-set method (LGWe-LSM), which shows a significant reduction of false-positive rate. The pixel-level fusion of the two enhanced methods shows more potentiality in the segmentation of the polyp regions. Our proposed network is trained on CVC-colon DB and tested on CVC-clinic DB. It achieves a dice score of 0.839, volume-similarity of 0.863, precision of 0.836, recall of 0.811, F1-score of 0.823, F2-score of 0.815, and Hausdorff distance of 21.796 which outperforms the existing baseline CNN's and recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白衣修身完成签到,获得积分10
刚刚
good233完成签到,获得积分10
1秒前
粗犷的沛容应助壮观采文采纳,获得10
1秒前
2秒前
hanyingwang完成签到,获得积分10
2秒前
qq158014169完成签到,获得积分10
2秒前
犹豫的初丹完成签到,获得积分10
3秒前
萧然完成签到,获得积分10
3秒前
南宫映榕完成签到,获得积分10
3秒前
4秒前
Kiosta完成签到,获得积分10
4秒前
4秒前
凶狠的映菱完成签到,获得积分10
5秒前
凉雨渲完成签到,获得积分10
5秒前
澳大利亚完成签到,获得积分10
5秒前
我我我发布了新的文献求助10
6秒前
6秒前
jeff完成签到,获得积分10
6秒前
7秒前
田様应助Lgumsi采纳,获得10
7秒前
8秒前
阳光的雪珊完成签到 ,获得积分10
8秒前
聪明映菡发布了新的文献求助30
8秒前
小怪兽完成签到,获得积分10
9秒前
9秒前
Kiosta发布了新的文献求助10
9秒前
Lucas应助凶狠的映菱采纳,获得10
10秒前
10秒前
ding应助尘尘笑采纳,获得10
10秒前
无语的凡梦完成签到,获得积分10
10秒前
11秒前
传统的松鼠完成签到 ,获得积分10
11秒前
哭泣又柔发布了新的文献求助10
11秒前
隐形的大有完成签到,获得积分10
11秒前
11秒前
FlipFlops完成签到,获得积分10
12秒前
shiy发布了新的文献求助10
12秒前
YB完成签到,获得积分10
13秒前
雷家完成签到,获得积分10
13秒前
无名完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5009518
求助须知:如何正确求助?哪些是违规求助? 4251634
关于积分的说明 13246493
捐赠科研通 4053100
什么是DOI,文献DOI怎么找? 2217170
邀请新用户注册赠送积分活动 1226902
关于科研通互助平台的介绍 1148857