Hydrogen Storage on Nanoporous Carbon Foam for Electrochemical Applications

氢气储存 材料科学 碳纤维 化学工程 吸附低温 碳化 吸附 氢燃料 化石燃料 废物管理 纳米技术 化学 复合材料 有机化学 复合数 工程类 扫描电子显微镜
作者
Muhammad Irfan Maulana Kusdhany,Hai-wen Li,Albert Mufundirwa,Kazunari Sasaki,Akari Hayashi,Stephen Matthew Lyth
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (7): 1123-1123
标识
DOI:10.1149/ma2020-0271123mtgabs
摘要

To be able to mitigate the threat of climate change, we need an alternative to fossil fuels. The use of hydrogen in fuel cells is an ideal candidate because hydrogen can be produced in many different ways and has a high energy density. However, one challenge in using hydrogen as a fuel is its storage. Storing hydrogen as compressed gas typically requires large pressures to meet US Department of Energy (DOE) targets, which leads to large losses during compression. By using solid state storage, we can use lower pressures for storage. Of the different kinds of solid state storage, physisorption on carbon materials has great potential because of its fast kinetics, reversibility, and the cost effectiveness of carbon materials. In this research, we investigate the storage of hydrogen gas through physical adsorption on a sodium ethoxide-derived carbon foam. This carbon foam has all the necessary requirements of a good hydrogen sorbent: very large surface area and a large micropore volume. This material is also easy to synthesize: sodium ethoxide is pyrolyzed in N 2 to make carbon, which is then washed in DI water and vacuum filtered. Unlike many other high surface area carbon materials, this carbon foam does not require a two-step carbonization-activation process, nor does it require a sacrificial template. This means it is more scalable and energy efficient compared to other synthetic carbon materials. [1,2] The hydrogen adsorption capability of this material is tested at both 77K and 298K at elevated pressures (up to 9.5 MPa). Both the excess hydrogen uptake and the total hydrogen uptake are discussed. The values obtained are comparable with benchmark materials such as MOF-5 and IRMOF-20, which have 8 wt% and 10 wt% total uptake at 10 MPa, respectively, [3] and could plausibly meet US DOE targets for light duty vehicle application (5.5 wt% total uptake) at a much lower pressure than conventional compressed gas storage (usually 70 MPa). This work shows the potential of nanoporous carbon materials such as ours to work as a new storage system or as a ‘range extender’ of sorts for existing fuel cell vehicles. [1] Lyth, S. M., Shao, H., Liu, J., Sasaki, K., and Akiba, E., 2014, “Hydrogen Adsorption on Graphene Foam Synthesized by Combustion of Sodium Ethoxide,” Int. J. Hydrogen Energy, 39 (1), pp. 376–380. [2] Choucair, M., and Mauron, P., 2015, “Versatile Preparation of Graphene-Based Nanocomposites and Their Hydrogen Adsorption,” Int. J. Hydrogen Energy, 40 (18), pp. 6158–6164. [3] Ahmed, A., Seth, S., Purewal, J., Wong-Foy, A. G., Veenstra, M., Matzger, A. J., and Siegel, D. J., 2019, “Exceptional Hydrogen Storage Achieved by Screening Nearly Half a Million Metal-Organic Frameworks,” Nat. Commun., 10 (1), pp. 1–9.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助依米zhang采纳,获得10
1秒前
无情修杰完成签到 ,获得积分10
1秒前
文静的牛排完成签到,获得积分10
2秒前
2秒前
顺心的千萍完成签到,获得积分10
3秒前
无花果应助聪慧的凝海采纳,获得10
4秒前
2316690509完成签到 ,获得积分10
4秒前
4秒前
20年单身狗完成签到,获得积分10
6秒前
陈诗羽完成签到,获得积分10
6秒前
cz发布了新的文献求助10
7秒前
皮卡丘比特应助lalala采纳,获得20
7秒前
爱听歌从蓉关注了科研通微信公众号
8秒前
香蕉觅云应助zh采纳,获得10
8秒前
9秒前
金金金完成签到,获得积分10
10秒前
11秒前
LONG发布了新的文献求助10
13秒前
红烧肉耶发布了新的文献求助10
14秒前
kirazou完成签到,获得积分10
14秒前
lwj完成签到,获得积分10
15秒前
20秒前
共享精神应助自觉的小凝采纳,获得10
24秒前
JamesPei应助琪求好运采纳,获得10
24秒前
25秒前
25秒前
25秒前
guard发布了新的文献求助10
25秒前
Sweety-完成签到 ,获得积分10
26秒前
26秒前
达拉崩吧完成签到,获得积分10
27秒前
童万明完成签到,获得积分20
28秒前
没烦恼完成签到,获得积分10
29秒前
zz完成签到 ,获得积分10
29秒前
Owen应助TingtingGZ采纳,获得10
29秒前
pomfret完成签到 ,获得积分10
31秒前
没烦恼发布了新的文献求助10
33秒前
童万明发布了新的文献求助10
33秒前
阳阳完成签到,获得积分10
34秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511