Convolutional Prototype Network for Open Set Recognition.

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 特征提取 特征(语言学)
作者
Hong-Ming Yang,Xu-Yao Zhang,Fei Yin,Qing Yang,Cheng-Lin Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:12
标识
DOI:10.1109/tpami.2020.3045079
摘要

Despite the success of convolutional neural network (CNN) in conventional closed-set recognition (CSR), it still lacks robustness for dealing with unknowns (those out of known classes) in open environment. To improve the robustness of CNN in open-set recognition (OSR) and meanwhile maintain its high accuracy in CSR, we propose an alternative deep framework called convolutional prototype network (CPN), which keeps CNN for representation learning but replaces the closed-world assumed softmax with an open-world oriented and human-like prototype model. To equip CPN with discriminative ability for classifying known samples, we design several discriminative losses for training. Moreover, to increase the robustness of CPN for unknowns, we interpret CPN from the perspective of generative model and further propose a generative loss, which is essentially maximizing the log-likelihood of known samples and serves as a latent regularization for discriminative learning. The combination of discriminative and generative losses makes CPN a hybrid model with advantages for both CSR and OSR. Under the designed losses, the CPN is trained end-to-end for learning the convolutional network and prototypes jointly. For application of CPN in OSR, we propose two rejection rules for detecting different types of unknowns. Experiments on several datasets demonstrate the efficiency and effectiveness of CPN for both CSR and OSR tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
悦耳娩完成签到,获得积分10
2秒前
GHL完成签到,获得积分10
2秒前
wanci应助wh采纳,获得10
2秒前
彭于彦祖发布了新的文献求助10
2秒前
安慕希完成签到,获得积分10
3秒前
kaka发布了新的文献求助10
4秒前
无花果应助nightmare采纳,获得10
5秒前
5秒前
静越完成签到 ,获得积分10
6秒前
llllly完成签到,获得积分10
6秒前
善学以致用应助CHEN采纳,获得10
6秒前
愉快凌晴完成签到 ,获得积分10
7秒前
Owen应助yoyo采纳,获得10
7秒前
7秒前
周周完成签到,获得积分10
7秒前
7秒前
御风甜咖啡完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
小权拳的权完成签到,获得积分10
9秒前
害怕的水之完成签到,获得积分10
9秒前
guohuameike完成签到,获得积分10
9秒前
斯文友琴完成签到,获得积分10
9秒前
sljsb完成签到,获得积分10
10秒前
10秒前
板栗完成签到,获得积分10
10秒前
Sylvia_J完成签到 ,获得积分10
10秒前
乐乐应助轩1采纳,获得10
10秒前
Benjamin完成签到,获得积分10
11秒前
Fantansy发布了新的文献求助10
11秒前
11秒前
雨夜聆风完成签到,获得积分10
11秒前
vivian完成签到 ,获得积分10
12秒前
崔志海完成签到,获得积分10
12秒前
砍柴少年发布了新的文献求助50
13秒前
13秒前
Ivy发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259