Convolutional Prototype Network for Open Set Recognition.

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 特征提取 特征(语言学)
作者
Hong-Ming Yang,Xu-Yao Zhang,Fei Yin,Qing Yang,Cheng-Lin Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:12
标识
DOI:10.1109/tpami.2020.3045079
摘要

Despite the success of convolutional neural network (CNN) in conventional closed-set recognition (CSR), it still lacks robustness for dealing with unknowns (those out of known classes) in open environment. To improve the robustness of CNN in open-set recognition (OSR) and meanwhile maintain its high accuracy in CSR, we propose an alternative deep framework called convolutional prototype network (CPN), which keeps CNN for representation learning but replaces the closed-world assumed softmax with an open-world oriented and human-like prototype model. To equip CPN with discriminative ability for classifying known samples, we design several discriminative losses for training. Moreover, to increase the robustness of CPN for unknowns, we interpret CPN from the perspective of generative model and further propose a generative loss, which is essentially maximizing the log-likelihood of known samples and serves as a latent regularization for discriminative learning. The combination of discriminative and generative losses makes CPN a hybrid model with advantages for both CSR and OSR. Under the designed losses, the CPN is trained end-to-end for learning the convolutional network and prototypes jointly. For application of CPN in OSR, we propose two rejection rules for detecting different types of unknowns. Experiments on several datasets demonstrate the efficiency and effectiveness of CPN for both CSR and OSR tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一丁雨发布了新的文献求助10
刚刚
啧啧啧啧发布了新的文献求助10
1秒前
善学以致用应助嗷嗷嗷采纳,获得10
1秒前
过时的沧海应助如意怀柔采纳,获得30
1秒前
WZW完成签到 ,获得积分10
1秒前
SHIJIE发布了新的文献求助10
2秒前
lf发布了新的文献求助10
2秒前
2秒前
隐形曼青应助连夏之采纳,获得10
2秒前
llllll完成签到,获得积分20
4秒前
purple1212完成签到,获得积分20
5秒前
123发布了新的文献求助30
6秒前
脑洞疼应助怕黑的翠绿采纳,获得10
6秒前
幸福的道之完成签到,获得积分20
6秒前
7秒前
7秒前
llllll发布了新的文献求助10
9秒前
谭访冬完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
PWG发布了新的文献求助10
12秒前
上官若男应助wangyue采纳,获得10
12秒前
12秒前
SHIJIE完成签到,获得积分10
12秒前
13秒前
等风的人发布了新的文献求助10
13秒前
13秒前
嗷嗷嗷发布了新的文献求助10
13秒前
14秒前
li完成签到,获得积分10
14秒前
江峰发布了新的文献求助10
15秒前
浩浩发布了新的文献求助10
16秒前
Mengjie完成签到,获得积分10
16秒前
谭访冬发布了新的文献求助10
16秒前
陌君子筱发布了新的文献求助10
16秒前
清嘉发布了新的文献求助10
16秒前
lqy555发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721